Warren G Hill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3723191/publications.pdf Version: 2024-02-01

WADDEN CHILL

#	Article	IF	CITATIONS
1	Molecular mechanisms of voiding dysfunction in a novel mouse model of acute urinary retention. FASEB Journal, 2021, 35, e21447.	0.5	5
2	Urine and Tissue Bacterial Loads Correlate With Voiding Behaviors in a Murine Urinary Tract Infection Model. Urology, 2021, 154, 344.e1-344.e7.	1.0	0
3	Urological complications of obesity and diabetes in males and females of three mouse models: temporal manifestations. American Journal of Physiology - Renal Physiology, 2020, 318, F160-F174.	2.7	13
4	Early Increased Urinary IL-2 and IL-10 Levels Were Associated With Development of Chronic UTI in a Murine Model. Urology, 2020, 141, 188.e1-188.e6.	1.0	6
5	Targetable purinergic receptors P2Y12 and A2b antagonistically regulate bladder function. JCI Insight, 2019, 4, .	5.0	16
6	Mouse urothelial genes associated with voiding behavior changes after ovariectomy and bladder lipopolysaccharide exposure. Neurourology and Urodynamics, 2018, 37, 2398-2405.	1.5	11
7	Role of P2X4 Receptor in Mouse Voiding Function. Scientific Reports, 2018, 8, 1838.	3.3	13
8	Void spot assay: recommendations on the use of a simple micturition assay for mice. American Journal of Physiology - Renal Physiology, 2018, 315, F1422-F1429.	2.7	43
9	Void spot assay procedural optimization and software for rapid and objective quantification of rodent voiding function, including overlapping urine spots. American Journal of Physiology - Renal Physiology, 2018, 315, F1067-F1080.	2.7	37
10	Inducible Loss Of Integrin β1 From Bladder Smooth Muscle Causes Increased Voiding Frequency And Impaired Muscarinic Contractility. FASEB Journal, 2018, 32, 770.9.	0.5	0
11	Special K: once the fun is over an EMT arrives for the bladder. American Journal of Physiology - Renal Physiology, 2017, 313, F1179-F1180.	2.7	1
12	Stage- and subunit-specific functions of polycomb repressive complex 2 in bladder urothelial formation and regeneration. Development (Cambridge), 2017, 144, 400-408.	2.5	12
13	Evaluating the voiding spot assay in mice: a simple method with complex environmental interactions. American Journal of Physiology - Renal Physiology, 2017, 313, F1274-F1280.	2.7	26
14	Effect of filling rate on cystometric parameters in young and middle aged mice. Bladder, 2017, 4, e28.	0.2	11
15	Aging Research Using Mouse Models. Current Protocols in Mouse Biology, 2015, 5, 95-133.	1.2	92
16	Control of Urinary Drainage and Voiding. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 480-492.	4.5	50
17	New impetus for innovation in benign urology. American Journal of Physiology - Renal Physiology, 2015, 308, F797-F798.	2.7	2
18	Evaluation of voiding assays in mice: impact of genetic strains and sex. American Journal of Physiology - Renal Physiology, 2015, 308, F1369-F1378.	2.7	52

WARREN G HILL

#	Article	IF	CITATIONS
19	Akita (Type I Diabetic) Mice Develop Bladder Dysfunction. FASEB Journal, 2015, 29, 1044.3.	0.5	Ο
20	IK Channel (SK4) Knockout Mice Have Normal Bladder Function. FASEB Journal, 2015, 29, 845.11.	0.5	0
21	Spontaneous voiding by mice reveals strain-specific lower urinary tract function to be a quantitative genetic trait. American Journal of Physiology - Renal Physiology, 2014, 306, F1296-F1307.	2.7	68
22	ADPâ€induced bladder contractility is mediated by P2Y ₁₂ receptor and temporally regulated by ectonucleotidases and adenosine signaling. FASEB Journal, 2014, 28, 5288-5298.	0.5	16
23	Lack of specificity shown by P2Y6 receptor antibodies. Naunyn-Schmiedeberg's Archives of Pharmacology, 2013, 386, 885-891.	3.0	34
24	Loss of β1â€integrin from urothelium results in overactive bladder and incontinence in mice: a mechanosensory rather than structural phenotype. FASEB Journal, 2013, 27, 1950-1961.	0.5	37
25	Extracellular UDP enhances P2Xâ€mediated bladder smooth muscle contractility <i>via</i> P2Y ₆ activation of the phospholipase C/inositol trisphosphate pathway. FASEB Journal, 2013, 27, 1895-1903.	0.5	27
26	Extracellular UDP potentiates bladder purinergic signaling and smooth muscle contractility via P2Y6 activation of PLC/IP3 pathway. FASEB Journal, 2013, 27, 923.2.	0.5	0
27	Uroplakins Do Not Restrict CO2 Transport through Urothelium. Journal of Biological Chemistry, 2012, 287, 11011-11017.	3.4	15
28	Cellular Expression Profile for Interstitial Cells of Cajal in Bladder - A Cell Often Misidentified as Myocyte or Myofibroblast. PLoS ONE, 2012, 7, e48897.	2.5	40
29	Conditional deletion of β1â€integrin from urothelium results in bladder dysfunction and abnormal voiding. FASEB Journal, 2012, 26, .	0.5	0
30	Expression and distribution of transient receptor potential (TRP) channels in bladder epithelium. American Journal of Physiology - Renal Physiology, 2011, 300, F49-F59.	2.7	91
31	Defining protein expression in the urothelium: a problem of more than transitional interest. American Journal of Physiology - Renal Physiology, 2011, 301, F932-F942.	2.7	25
32	Expression and Distribution of Ectonucleotidases in Mouse Urinary Bladder. PLoS ONE, 2011, 6, e18704.	2.5	49
33	Expression and functional characterization of four aquaporin water channels from the European eel (Anguilla anguilla). Journal of Experimental Biology, 2009, 212, 2856-2863.	1.7	46
34	Functional characterization of mouse urea transporters UT-A2 and UT-A3 expressed in purified <i>Xenopus laevis</i> oocyte plasma membranes. American Journal of Physiology - Renal Physiology, 2008, 294, F956-F964.	2.7	27
35	Studies on localization and function of annexin A4a within urinary bladder epithelium using a mouse knockout model. American Journal of Physiology - Renal Physiology, 2008, 294, F919-F927.	2.7	14
36	The Epithelial Sodium Channel (ENaC) Traffics to Apical Membrane in Lipid Rafts in Mouse Cortical Collecting Duct Cells. Journal of Biological Chemistry, 2007, 282, 37402-37411.	3.4	65

WARREN G HILL

#	Article	IF	CITATIONS
37	Lack of a role of membrane-protein interactions in flow-dependent activation of ENaC. American Journal of Physiology - Renal Physiology, 2007, 293, F316-F324.	2.7	21
38	Functional characterization of four aquaporins (AQPs) cloned from the European eel, Anguilla anguilla. FASEB Journal, 2007, 21, A965.	0.5	2
39	Lipid rafts mediate constitutive apical delivery of the epithelial sodium channel (ENaC). FASEB Journal, 2007, 21, A954.	0.5	Ο
40	Lipid raft components cholesterol and sphingomyelin increase H+/OHâ^' permeability of phosphatidylcholine membranes. Biochemical Journal, 2006, 398, 485-495.	3.7	39
41	Isolation and characterization of the Xenopus oocyte plasma membrane: a new method for studying activity of water and solute transporters. American Journal of Physiology - Renal Physiology, 2005, 289, F217-F224.	2.7	57
42	Developmental expression and biophysical characterization of a Drosophila melanogaster aquaporin. American Journal of Physiology - Cell Physiology, 2005, 289, C397-C407.	4.6	124
43	Water and solute permeability of rat lung caveolae: high permeabilities explained by acyl chain unsaturation. American Journal of Physiology - Cell Physiology, 2005, 289, C33-C41.	4.6	16
44	Permeabilities of teleost and elasmobranch gill apical membranes: evidence that lipid bilayers alone do not account for barrier function. American Journal of Physiology - Cell Physiology, 2004, 287, C235-C242.	4.6	36
45	ENaC–Membrane Interactions. Journal of General Physiology, 2004, 123, 709-727.	1.9	58
46	Editorial: Membrane Protein Interactions in the Bladder—Charges of Disorderly Conduct. Journal of Urology, 2003, 170, 2095-2096.	0.4	8
47	Arachidonic Acid Regulates Surface Expression of Epithelial Sodium Channels. Journal of Biological Chemistry, 2003, 278, 36202-36213.	3.4	57
48	Annexin A4 Reduces Water and Proton Permeability of Model Membranes but Does Not Alter Aquaporin 2–mediated Water Transport in Isolated Endosomes. Journal of General Physiology, 2003, 121, 413-425.	1.9	46
49	Endogenously Expressed Epithelial Sodium Channel Is Present in Lipid Rafts in A6 Cells. Journal of Biological Chemistry, 2002, 277, 33541-33544.	3.4	79
50	Water Permeability of Asymmetric Planar Lipid Bilayers. Journal of General Physiology, 2001, 118, 333-340.	1.9	75
51	Evidence against the acidification hypothesis in cystic fibrosis. American Journal of Physiology - Cell Physiology, 2000, 279, C1088-C1099.	4.6	27
52	Forskolin-induced apical membrane insertion of virally expressed, epitope-tagged CFTR in polarized MDCK cells. American Journal of Physiology - Cell Physiology, 2000, 279, C375-C382.	4.6	63
53	Reconstituting the Barrier Properties of a Water-tight Epithelial Membrane by Design of Leaflet-specific Liposomes. Journal of Biological Chemistry, 2000, 275, 30176-30185.	3.4	86
54	Role of Leaflet Asymmetry in the Permeability of Model Biological Membranes to Protons, Solutes, and Gases. Journal of General Physiology, 1999, 114, 405-414.	1.9	52

WARREN G HILL

#	Article	IF	CITATIONS
55	Enhanced channelling of sulphate through a rapidly exchangeable sulphate pool in response to stimulated glycosaminoglycan synthesis in pancreatic epithelial cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1999, 1454, 174-182.	3.8	7
56	Glycosylation differences between a cystic fibrosis and rescued airway cell line are not CFTR dependent. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1997, 273, L913-L920.	2.9	15
57	Sulfation of Chondroitin/Dermatan Sulfate by Cystic Fibrosis Pancreatic Duct Cells Is Not Different from Control Cells. Biochemical and Molecular Medicine, 1997, 62, 85-94.	1.4	5
58	Organ-Specific Over-sulfation of Glycosaminoglycans and Altered Extracellular Matrix in a Mouse Model of Cystic Fibrosis. Biochemical and Molecular Medicine, 1997, 62, 113-122.	1.4	25