Joseph J Pignatello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3723090/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 2006, 36, 1-84.	12.8	3,098
2	Mechanisms of Slow Sorption of Organic Chemicals to Natural Particles. Environmental Science & Technology, 1996, 30, 1-11.	10.0	1,500
3	Dark and photoassisted iron(3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environmental Science & Technology, 1992, 26, 944-951.	10.0	1,090
4	Sequestration of Hydrophobic Organic Contaminants by Geosorbents. Environmental Science & Technology, 1997, 31, 3341-3347.	10.0	923
5	Comparison of Halide Impacts on the Efficiency of Contaminant Degradation by Sulfate and Hydroxyl Radical-Based Advanced Oxidation Processes (AOPs). Environmental Science & Technology, 2014, 48, 2344-2351.	10.0	785
6	Effect of Halide Ions and Carbonates on Organic Contaminant Degradation by Hydroxyl Radical-Based Advanced Oxidation Processes in Saline Waters. Environmental Science & Technology, 2010, 44, 6822-6828.	10.0	717
7	Dual-Mode Sorption of Low-Polarity Compounds in Glassy Poly(Vinyl Chloride) and Soil Organic Matter. Environmental Science & Technology, 1997, 31, 792-799.	10.0	705
8	Oxidation of Organic Compounds in Water by Unactivated Peroxymonosulfate. Environmental Science & Technology, 2018, 52, 5911-5919.	10.0	576
9	Role of Quinone Intermediates as Electron Shuttles in Fenton and Photoassisted Fenton Oxidations of Aromatic Compounds. Environmental Science & amp; Technology, 1997, 31, 2399-2406.	10.0	574
10	Photochemical reactions involved in the total mineralization of 2,4-D by iron(3+)/hydrogen peroxide/UV. Environmental Science & Technology, 1993, 27, 304-310.	10.0	567
11	Competitive Sorption between Atrazine and Other Organic Compounds in Soils and Model Sorbents. Environmental Science & Technology, 1996, 30, 2432-2440.	10.0	491
12	Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores. Environmental Science & Technology, 1987, 21, 1201-1208.	10.0	469
13	Speciation of the Ionizable Antibiotic Sulfamethazine on Black Carbon (Biochar). Environmental Science & Technology, 2011, 45, 10020-10027.	10.0	407
14	Characterization of Aromatic Compound Sorptive Interactions with Black Carbon (Charcoal) Assisted by Graphite as a Model. Environmental Science & Technology, 2005, 39, 2033-2041.	10.0	383
15	Effect of Natural Organic Substances on the Surface and Adsorptive Properties of Environmental Black Carbon (Char):Â Attenuation of Surface Activity by Humic and Fulvic Acids. Environmental Science & Technology, 2006, 40, 7757-7763.	10.0	382
16	Evidence for an Additional Oxidant in the Photoassisted Fenton Reaction. Environmental Science & Technology, 1999, 33, 1832-1839.	10.0	363
17	Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction. Water Research, 1999, 33, 1238-1246.	11.3	310
18	Sorption Hysteresis of Benzene in Charcoal Particles. Environmental Science & Technology, 2003, 37, 409-417.	10.0	305

#	Article	IF	CITATIONS
19	Chemical treatment of pesticide wastes. Evaluation of iron(III) chelates for catalytic hydrogen peroxide oxidation of 2,4-D at circumneutral pH. Journal of Agricultural and Food Chemistry, 1992, 40, 322-327.	5.2	278
20	Evidence for Ï€â^'Ï€ Electron Donorâ^'Acceptor Interactions between Ï€-Donor Aromatic Compounds and Ï€-Acceptor Sites in Soil Organic Matter through pH Effects on Sorption. Environmental Science & Technology, 2004, 38, 4361-4368.	10.0	249
21	Adsorption of Single-Ring Organic Compounds to Wood Charcoals Prepared under Different Thermochemical Conditions. Environmental Science & Technology, 2005, 39, 3990-3998.	10.0	247
22	Effect of matrix components on UV/H2O2 and UV/S2O82â^' advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities. Water Research, 2016, 89, 192-200.	11.3	232
23	Effect of Biochar Amendments on Mycorrhizal Associations and Fusarium Crown and Root Rot of Asparagus in Replant Soils. Plant Disease, 2011, 95, 960-966.	1.4	224
24	Activity and Reactivity of Pyrogenic Carbonaceous Matter toward Organic Compounds. Environmental Science & Technology, 2017, 51, 8893-8908.	10.0	213
25	Elution of aged and freshly added herbicides from a soil. Environmental Science & Technology, 1993, 27, 1563-1571.	10.0	206
26	Effect of Natural Organic Substances on the Surface and Adsorptive Properties of Environmental Black Carbon (Char):  Pseudo Pore Blockage by Model Lipid Components and Its Implications for N2-Probed Surface Properties of Natural Sorbents. Environmental Science & Technology, 2005, 39, 7932-7939.	10.0	185
27	Characterization of Charcoal Adsorption Sites for Aromatic Compounds:  Insights Drawn from Single-Solute and Bi-Solute Competitive Experiments. Environmental Science & Technology, 2005, 39, 1606-1615.	10.0	180
28	Demonstration of the "Conditioning Effect―in Soil Organic Matter in Support of a Pore Deformation Mechanism for Sorption Hysteresis. Environmental Science & Technology, 2002, 36, 4553-4561.	10.0	166
29	Detailed Sorption Isotherms of Polar and Apolar Compounds in a High-Organic Soil. Environmental Science & Technology, 2001, 35, 84-94.	10.0	163
30	Sorptive Reversibility of Atrazine and Metolachlor Residues in Field Soil Samples. Journal of Environmental Quality, 1991, 20, 222-228.	2.0	162
31	Evidence for a surface dual hole-radical mechanism in the titanium dioxide photocatalytic oxidation of 2,4-D Environmental Science & amp; Technology, 1995, 29, 2065-2072.	10.0	161
32	Role of Black Carbon Electrical Conductivity in Mediating Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) Transformation on Carbon Surfaces by Sulfides. Environmental Science & Technology, 2013, 47, 7129-7136.	10.0	155
33	Sorbic acid as a quantitative probe for the formation, scavenging and steady-state concentrations of the triplet-excited state of organic compounds. Water Research, 2011, 45, 6535-6544.	11.3	150
34	A Thermodynamically Based Method to Quantify True Sorption Hysteresis. Journal of Environmental Quality, 2005, 34, 1063-1072.	2.0	141
35	Influence of Molecular Structure and Adsorbent Properties on Sorption of Organic Compounds to a Temperature Series of Wood Chars. Environmental Science & amp; Technology, 2014, 48, 4790-4798.	10.0	137
36	Adsorption of 2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(II). Water Research, 2009, 43, 2409-2418.	11.3	135

#	Article	IF	CITATIONS
37	Complete oxidation of metolachlor and methyl parathion in water by the photoassisted Fenton reaction. Water Research, 1995, 29, 1837-1844.	11.3	134
38	Characterization of Wood Chars Produced at Different Temperatures Using Advanced Solid-State ¹³ C NMR Spectroscopic Techniques. Energy & Fuels, 2012, 26, 5983-5991.	5.1	132
39	Competitive Sorption between 1,3-Dichlorobenzene or 2,4-Dichlorophenol and Natural Aromatic Acids in Soil Organic Matter. Environmental Science & Technology, 1998, 32, 614-619.	10.0	131
40	Adsorption of Aromatic Carboxylate Ions to Black Carbon (Biochar) Is Accompanied by Proton Exchange with Water. Environmental Science & Technology, 2011, 45, 9240-9248.	10.0	128
41	Interactions of triazine herbicides with biochar: Steric and electronic effects. Water Research, 2015, 80, 179-188.	11.3	127
42	Activation of hydrogen peroxide by iron(III) chelates for abiotic degradation of herbicides and insecticides in water. Journal of Agricultural and Food Chemistry, 1993, 41, 308-312.	5.2	119
43	Influence of Ionic Strength on Triplet-State Natural Organic Matter Loss by Energy Transfer and Electron Transfer Pathways. Environmental Science & Technology, 2013, 47, 10987-10994.	10.0	109
44	Degradation of <i>p</i> -Nitrophenol by Lignin and Cellulose Chars: H ₂ O ₂ -Mediated Reaction and Direct Reaction with the Char. Environmental Science & Technology, 2017, 51, 8972-8980.	10.0	108
45	π ⁺ –π Interactions between (Hetero)aromatic Amine Cations and the Graphitic Surfaces of Pyrogenic Carbonaceous Materials. Environmental Science & Technology, 2015, 49, 906-914.	10.0	105
46	Predicting Contaminant Adsorption in Black Carbon (Biochar)-Amended Soil for the Veterinary Antimicrobial Sulfamethazine. Environmental Science & Technology, 2013, 47, 6197-6205.	10.0	104
47	Sorption of Apolar Aromatic Compounds to Soil Humic Acid Particles Affected by Aluminum(III) Ion Cross‣inking. Journal of Environmental Quality, 2004, 33, 1314-1321.	2.0	96
48	Degradation and detoxification of the wood preservatives creosote and pentachlorophenol in water by the photo-Fenton reaction. Water Research, 1999, 33, 1151-1158.	11.3	91
49	Effects of Post-Pyrolysis Air Oxidation of Biomass Chars on Adsorption of Neutral and Ionizable Compounds. Environmental Science & Technology, 2016, 50, 6276-6283.	10.0	88
50	Ferric Complexes as Catalysts for "Fenton―Degradation of 2,4â€Ð and Metolachlor in Soil. Journal of Environmental Quality, 1994, 23, 365-370.	2.0	86
51	The Measurement and Interpretation of Sorption and Desorption Rates for Organic Compounds in Soil Media. Advances in Agronomy, 1999, 69, 1-73.	5.2	85
52	The Fenton Reaction in Water Assisted by Picolinic Acid: Accelerated Iron Cycling and Co-generation of a Selective Fe-Based Oxidant. Environmental Science & Technology, 2021, 55, 8299-8308.	10.0	84
53	Impact of Halide Ions on Natural Organic Matter-Sensitized Photolysis of 17β-Estradiol in Saline Waters. Environmental Science & Technology, 2012, 46, 7128-7134.	10.0	83
54	Formation of π–π Complexes between Phenanthrene and Model Ï€â€Acceptor Humic Subunits. Journal of Environmental Quality, 2004, 33, 265-275.	2.0	82

#	Article	IF	CITATIONS
55	Impact of halides on the photobleaching of dissolved organic matter. Marine Chemistry, 2009, 115, 134-144.	2.3	82
56	Influence of Bisolute Competition on the Desorption Kinetics of Polycyclic Aromatic Hydrocarbons in Soil. Environmental Science & Technology, 1999, 33, 4292-4298.	10.0	80
57	Sunlight-Driven Photochemical Halogenation of Dissolved Organic Matter in Seawater: A Natural Abiotic Source of Organobromine and Organoiodine. Environmental Science & Technology, 2014, 48, 7418-7427.	10.0	80
58	Heteroaggregation of Cerium Oxide Nanoparticles and Nanoparticles of Pyrolyzed Biomass. Environmental Science & Technology, 2015, 49, 13294-13303.	10.0	78
59	Reduction of Perchloroalkanes by Ferrioxalate-Generated Carboxylate Radical Preceding Mineralization by the Photo-Fenton Reaction. Environmental Science & Technology, 1996, 30, 3457-3463.	10.0	76
60	Nonlinear and Competitive Sorption of Apolar Compounds in Black Carbonâ€Free Natural Organic Materials. Journal of Environmental Quality, 2006, 35, 1049-1059.	2.0	74
61	Aversive responses of white-tailed deer,Odocoileus virginianus, to predator urines. Journal of Chemical Ecology, 1991, 17, 767-777.	1.8	71
62	Reduction of Nitroaromatics Sorbed to Black Carbon by Direct Reaction with Sorbed Sulfides. Environmental Science & Technology, 2015, 49, 3419-3426.	10.0	66
63	Organic intermediates in the degradation of 2,4-dichlorophenoxyacetic acid by iron(3+)/hydrogen peroxide and iron(3+)/hydrogen peroxide/UV. Journal of Agricultural and Food Chemistry, 1993, 41, 1139-1142.	5.2	65
64	Dynamic interactions of natural organic matter and organic compounds. Journal of Soils and Sediments, 2012, 12, 1241-1256.	3.0	65
65	Environmental fate of the fungicide metalaxyl in soil amended with composted olive-mill waste and its biochar: An enantioselective study. Science of the Total Environment, 2016, 541, 776-783.	8.0	63
66	History-Dependent Sorption in Humic Acids and a Lignite in the Context of a Polymer Model for Natural Organic Matterâ€. Environmental Science & Technology, 2004, 38, 5853-5862.	10.0	62
67	Peroxymonosulfate Oxidizes Amino Acids in Water without Activation. Environmental Science & Technology, 2019, 53, 10845-10854.	10.0	61
68	Advanced Solid-State NMR Characterization of Marine Dissolved Organic Matter Isolated Using the Coupled Reverse Osmosis/Electrodialysis Method. Environmental Science & Technology, 2012, 46, 5806-5814.	10.0	60
69	Conditioning-Annealing Studies of Natural Organic Matter Solids Linking Irreversible Sorption to Irreversible Structural Expansion. Environmental Science & Technology, 2006, 40, 170-178.	10.0	59
70	Competitive Sorption Used To Probe Strong Hydrogen Bonding Sites for Weak Organic Acids on Carbon Nanotubes. Environmental Science & Technology, 2015, 49, 1409-1417.	10.0	58
71	An Isotope Exchange Technique to Assess Mechanisms of Sorption Hysteresis Applied to Naphthalene in Kerogenous Organic Matter. Environmental Science & Technology, 2005, 39, 7476-7484.	10.0	57
72	Dual-mode modeling of competitive and concentration-dependent sorption and desorption kinetics of polycyclic aromatic hydrocarbons in soils. Water Resources Research, 2001, 37, 2205-2212.	4.2	56

#	Article	IF	CITATIONS
73	Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil. Plant Physiology and Biochemistry, 2017, 110, 147-157.	5.8	55
74	Bioacessibility of PAHs in Fuel Soot Assessed by an <i>in Vitro</i> Digestive Model: Effect of Including an Absorptive Sink. Environmental Science & Technology, 2015, 49, 3905-3912.	10.0	53
75	Participation of the Halogens in Photochemical Reactions in Natural and Treated Waters. Molecules, 2017, 22, 1684.	3.8	52
76	Thermal air oxidation changes surface and adsorptive properties of black carbon (char/biochar). Science of the Total Environment, 2018, 618, 276-283.	8.0	51
77	A Concentration-Dependent Multi-Term Linear Free Energy Relationship for Sorption of Organic Compounds to Soils Based on the Hexadecane Dilute-Solution Reference State. Environmental Science & Technology, 2005, 39, 8817-8828.	10.0	49
78	Effect of Solute Concentration on Sorption of Polyaromatic Hydrocarbons in Soil:Â Uptake Rates. Environmental Science & Technology, 2001, 35, 2765-2772.	10.0	44
79	New Insight into Adsorption Mechanism of Ionizable Compounds on Carbon Nanotubes. Environmental Science & Technology, 2013, 47, 130710121153005.	10.0	44
80	Laboratory Tests of Biochars as Absorbents for Use in Recovery or Containment of Marine Crude Oil Spills. Environmental Engineering Science, 2013, 30, 374-380.	1.6	44
81	On the Reversibility of Sorption to Black Carbon:Â Distinguishing True Hysteresis from Artificial Hysteresis Caused by Dilution of a Competing Adsorbate. Environmental Science & Technology, 2007, 41, 843-849.	10.0	42
82	Bioaccessibility of PAHs in Fuel Soot Assessed by an in Vitro Digestive Model with Absorptive Sink: Effect of Food Ingestion. Environmental Science & Technology, 2015, 49, 14641-14648.	10.0	42
83	MODEL-AIDED CHARACTERIZATION OF TENAX®-TA FOR AROMATIC COMPOUND UPTAKE FROM WATER. Environmental Toxicology and Chemistry, 2004, 23, 1592.	4.3	41
84	Sorption and Mobility of Charged Organic Compounds: How to Confront and Overcome Limitations in Their Assessment. Environmental Science & amp; Technology, 2022, 56, 4702-4710.	10.0	41
85	Field-observed ethylene dibromide in an aquifer after two decades. Journal of Contaminant Hydrology, 1990, 5, 195-214.	3.3	39
86	Sorption irreversibility of 1,4â€dichlorobenzene in two natural organic matter–rich geosorbents. Environmental Toxicology and Chemistry, 2009, 28, 447-457.	4.3	37
87	Evidence of Micropore Filling for Sorption of Nonpolar Organic Contaminants by Condensed Organic Matter. Journal of Environmental Quality, 2013, 42, 806-814.	2.0	34
88	Revisiting the phenanthroline and ferrozine colorimetric methods for quantification of Fe(II) in Fenton reactions. Chemical Engineering Journal, 2020, 391, 123592.	12.7	32
89	Characterization of oil shale, isolated kerogen, and postpyrolysis residues using advanced 13C solid-state nuclear magnetic resonance spectroscopy. AAPG Bulletin, 2013, 97, 421-436.	1.5	31
90	Mn(II) Acceleration of the Picolinic Acid-Assisted Fenton Reaction: New Insight into the Role of Manganese in Homogeneous Fenton AOPs. Environmental Science & Technology, 2022, 56, 6621-6630.	10.0	31

#	Article	IF	CITATIONS
91	Effect of Adsorption Nonlinearity on the pH–Adsorption Profile of Ionizable Organic Compounds. Langmuir, 2014, 30, 1994-2001.	3.5	30
92	Ethylene Dibromide Mineralization in Soils under Aerobic Conditions. Applied and Environmental Microbiology, 1986, 51, 588-592.	3.1	29
93	Active removal of biochar by earthworms (Lumbricus terrestris). Pedobiologia, 2015, 58, 1-6.	1.2	28
94	Modification of pyrogenic carbons for phosphate sorption through binding of a cationic polymer. Journal of Colloid and Interface Science, 2020, 579, 258-268.	9.4	28
95	Reoxidation of Photoreduced Polyoxotungstate ([PW ₁₂ O ₄₀] ^{4–}) by Different Oxidants in the Presence of a Model Pollutant. Kinetics and Reaction Mechanism. Journal of Physical Chemistry A, 2015, 119, 1055-1065.	2.5	24
96	Bioaccumulation of CeO ₂ Nanoparticles by Earthworms in Biochar-Amended Soil: A Synchrotron Microspectroscopy Study. Journal of Agricultural and Food Chemistry, 2018, 66, 6609-6618.	5.2	24
97	Improved Extraction of Atrazine and Metolachlor in Field Soil Samples. Journal of the Association of Official Analytical Chemists, 1990, 73, 443-446.	0.2	23
98	Adsorption and desorption of nitrous oxide by raw and thermally air-oxidized chars. Science of the Total Environment, 2018, 643, 1436-1445.	8.0	23
99	Sorption Selectivity in Natural Organic Matter Studied with Nitroxyl Paramagnetic Relaxation Probes. Environmental Science & Technology, 2012, 46, 12814-12822.	10.0	22
100	Synthesis and Application of a Quaternary Phosphonium Polymer Coagulant To Avoid <i>N</i> -Nitrosamine Formation. Environmental Science & Technology, 2014, 48, 13392-13401.	10.0	22
101	Surface Interactions between Gold Nanoparticles and Biochar. Scientific Reports, 2017, 7, 5027.	3.3	22
102	Microbial Degradation of 1,2-Dibromoethane in Shallow Aquifer Materials. Journal of Environmental Quality, 1987, 16, 307-312.	2.0	21
103	Sorption Selectivity in Natural Organic Matter Probed with Fully Deuterium-Exchanged and Carbonyl- ¹³ C-Labeled Benzophenone and ¹ H– ¹³ C NMR Spectroscopy. Environmental Science & Technology, 2014, 48, 8645-8652.	10.0	21
104	Reaction of Substituted Phenols with Lignin Char: Dual Oxidative and Reductive Pathways Depending on Substituents and Conditions. Environmental Science & Technology, 2020, 54, 15811-15820.	10.0	21
105	Activation of Hydrogen Peroxide and Solid Peroxide Reagents by Phosphate Ion in Alkaline Solution. Environmental Engineering Science, 2016, 33, 193-199.	1.6	20
106	Pignatello and Xing's Comment on "Evaluation of the Glassy/Rubbery Model for Soil Organic Matter― Environmental Science & Technology, 1999, 33, 2837-2838.	10.0	17
107	Sources, Interactions, and Ecological Impacts of Organic Contaminants in Water, Soil, and Sediment: An Introduction to the Special Series. Journal of Environmental Quality, 2010, 39, 1133-1138.	2.0	16
108	Adsorption of Organic Compounds by Biomass Chars: Direct Role of Aromatic Condensation (Ring) Tj ETQq0 0 0	rgBT /Ove 10.0	rlock 10 Tf 5

Technology, 2021, 55, 1594-1603.

#	Article	IF	CITATIONS
109	Bioaccessibility of PAHs and PAH derivatives in a fuel soot assessed by an in vitro digestive model with absorptive sink: Effects of aging the soot in a soil-water mixture. Science of the Total Environment, 2018, 615, 169-176.	8.0	15
110	Catalytic oxidation for elimination of methyl bromide fumigation emissions using ceria-based catalysts. Applied Catalysis B: Environmental, 2013, 142-143, 785-794.	20.2	14
111	Preparation and characterization of humic acid cross-linked with organic bridging groups. Organic Geochemistry, 2012, 47, 132-138.	1.8	13
112	Bioaccessibility of nitro- and oxy-PAHs in fuel soot assessed by an inÂvitro digestive model with absorptive sink. Environmental Pollution, 2016, 218, 901-908.	7.5	13
113	Autoxidation of transition-metal complexes. Reaction of a 1:1 cobalt-molecular oxygen complex with acids to yield hydrogen peroxide. Kinetics and mechanism. Journal of the American Chemical Society, 1979, 101, 5929-5939.	13.7	12
114	Charge-assisted hydrogen bonding as a cohesive force in soil organic matter: water solubility enhancement by addition of simple carboxylic acids. Environmental Sciences: Processes and Impacts, 2018, 20, 1225-1233.	3.5	12
115	An Approach for Incorporating Information on Chemical Availability in Soils into Risk Assessment and Risk-Based Decision Making, Prepared by: The New England Environmentally Acceptable Endpoints Workgroup. Human and Ecological Risk Assessment (HERA), 2000, 6, 479-510.	3.4	11
116	ISOT_Calc: A versatile tool for parameter estimation in sorption isotherms. Computers and Geosciences, 2016, 94, 11-17.	4.2	11
117	Activated carbon-mediated base hydrolysis of alkyl bromides. Applied Catalysis B: Environmental, 2017, 211, 68-78.	20.2	11
118	Structure-activity correlations among analogs of 4-methyl-3-heptanol, a pheromone component of the european elm bark beetle (Scolytus multistriatus). Journal of Chemical Ecology, 1983, 9, 615-643.	1.8	10
119	Response to Comment on "Competitive Sorption between Atrazine and Other Organic Compounds in Soils and Model Sorbents― Environmental Science & Technology, 1997, 31, 1578-1579.	10.0	10
120	Effects of post-pyrolysis air oxidation on the chemical composition of biomass chars investigated by solid-state nuclear magnetic resonance spectroscopy. Carbon, 2019, 153, 173-178.	10.3	10
121	Abatement of Polycyclic Aromatic Hydrocarbon Residues in Biochars by Thermal Oxidation. Environmental Science and Technology Letters, 2021, 8, 451-456.	8.7	8
122	Bioavailability of Contaminants in Soil. Soil Biology, 2009, , 35-71.	0.8	8
123	Adsorption of Dissolved Organic Compounds by Black Carbon. , 2013, , 359-385.		8
124	Physicochemical Changes in Biomass Chars by Thermal Oxidation or Ambient Weathering and Their Impacts on Sorption of a Hydrophobic and a Cationic Compound. Environmental Science & Technology, 2021, 55, 13072-13081.	10.0	7
125	Modified carbons for enhanced nucleophilic substitution reactions of adsorbed methyl bromide. Applied Catalysis B: Environmental, 2018, 233, 281-288.	20.2	6
126	Importance of Soil Properties and Processes on Bioavailability of Organic Compounds. Handbook of Environmental Chemistry, 2020, , 7-41.	0.4	6

#	Article	IF	CITATIONS
127	Evaluation of select biochars and clays as supports for phytase to increase the fertilizer potential of animal wastes. Science of the Total Environment, 2021, 787, 147720.	8.0	5
128	Investigation of sorbate-induced plasticization of Pahokee peat by solid-state NMR spectroscopy. Journal of Soils and Sediments, 2016, 16, 1841-1848.	3.0	4
129	Structural Transformation of Biochar Black Carbon by C60 Superstructure: Environmental Implications. Scientific Reports, 2017, 7, 11787.	3.3	4
130	Application of the dual-mode model for predicting competitive sorption equilibria and rates of polycyclic aromatic hydrocarbons in estuarine sediment suspensions. Environmental Toxicology and Chemistry, 2002, 21, 2276-82.	4.3	0