Christian Kramberger-Kaplan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3723023/publications.pdf

Version: 2024-02-01

394421 377865 1,297 61 19 34 citations h-index g-index papers 63 63 63 1594 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tailoring N-Doped Single and Double Wall Carbon Nanotubes from a Nondiluted Carbon/Nitrogen Feedstock. Journal of Physical Chemistry C, 2007, 111, 2879-2884.	3.1	119
2	Thermal Decomposition of Ferrocene as a Method for Production of Single-Walled Carbon Nanotubes without Additional Carbon Sources. Journal of Physical Chemistry B, 2006, 110, 20973-20977.	2.6	96
3	Oxide-Driven Carbon Nanotube Growth in Supported Catalyst CVD. Journal of the American Chemical Society, 2007, 129, 15772-15773.	13.7	91
4	Unraveling the 3D Atomic Structure of a Suspended Graphene/hBN van der Waals Heterostructure. Nano Letters, 2017, 17, 1409-1416.	9.1	84
5	Diameter selective doping of single wall carbon nanotubes. Physical Chemistry Chemical Physics, 2003, 5, 582-587.	2.8	82
6	Catalyst Volume to Surface Area Constraints for Nucleating Carbon Nanotubes. Journal of Physical Chemistry B, 2007, 111, 8234-8241.	2.6	59
7	Diameter-controlled and nitrogen-doped vertically aligned single-walled carbon nanotubes. Carbon, 2012, 50, 2635-2640.	10.3	58
8	Catalyst and Chirality Dependent Growth of Carbon Nanotubes Determined Through Nanoâ€Test Tube Chemistry. Advanced Materials, 2010, 22, 3685-3689.	21.0	54
9	Isotope-Engineered Single-Wall Carbon Nanotubes; A Key Material for Magnetic Studies. Journal of Physical Chemistry C, 2007, 111, 4094-4098.	3.1	50
10	Nanoengineered Catalyst Particles as a Key for Tailor-Made Carbon Nanotubes. Chemistry of Materials, 2007, 19, 5006-5009.	6.7	47
11	Revealing the Small-Bundle Internal Structure of Vertically Aligned Single-Walled Carbon Nanotube Filmsâ€. Journal of Physical Chemistry C, 2007, 111, 17861-17864.	3.1	37
12	Reversible Diameter Modulation of Single-Walled Carbon Nanotubes by Acetonitrile-Containing Feedstock. ACS Nano, 2013, 7, 2205-2211.	14.6	30
13	Applications of Pristine and Functionalized Carbon Nanotubes, Graphene, and Graphene Nanoribbons in Biomedicine. Nanomaterials, 2021, 11, 3020.	4.1	30
14	Chirality-dependent growth of single-wall carbon nanotubes as revealed inside nano-test tubes. Nanoscale, 2017, 9, 7998-8006.	5.6	29
15	Applications of Filled Single-Walled Carbon Nanotubes: Progress, Challenges, and Perspectives. Nanomaterials, 2021, 11, 2863.	4.1	26
16	Raman response of FeCl ₃ intercalated singleâ€wall carbon nanotubes at high doping. Physica Status Solidi (B): Basic Research, 2009, 246, 2732-2736.	1.5	25
17	Chiral vector and metal catalyst-dependent growth kinetics of single-wall carbon nanotubes. Carbon, 2018, 133, 283-292.	10.3	21
18	Insights into radiation damage from atomic resolution scanning transmission electron microscopy imaging of mono-layer CuPcCl16 films on graphene. Scientific Reports, 2018, 8, 4813.	3.3	21

#	Article	IF	Citations
19	Fermi level engineering of metallicity-sorted metallic single-walled carbon nanotubes by encapsulation of few-atom-thick crystals of silver chloride. Journal of Materials Science, 2018, 53, 13018-13029.	3.7	21
20	Nanochemical reactions by laser annealing of ferrocene filled singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2011, 248, 2488-2491.	1.5	18
21	Software electron counting for low-dose scanning transmission electron microscopy. Ultramicroscopy, 2018, 188, 1-7.	1.9	18
22	One-dimensional N2 gas inside single-walled carbon nanotubes. Carbon, 2013, 55, 196-201.	10.3	16
23	Metal Cluster Size-Dependent Activation Energies of Growth of Single-Chirality Single-Walled Carbon Nanotubes inside Metallocene-Filled Single-Walled Carbon Nanotubes. Nanomaterials, 2021, 11, 2649.	4.1	16
24	Electronic properties of singleâ€walled carbon nanotubes encapsulating a cerium organometallic compound. Physica Status Solidi (B): Basic Research, 2009, 246, 2626-2630.	1.5	15
25	Temperature-dependent inner tube growth and electronic structure of nickelocene-filled single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2015, 252, 2485-2490.	1.5	15
26	Revealing the doping effect of encapsulated lead halogenides on single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	15
27	Revealing the 3D structure of graphene defects. 2D Materials, 2018, 5, 045029.	4.4	14
28	Characterization of the Electronic Properties of Singleâ€Walled Carbon Nanotubes Filled with an Electron Donorâ€"Rubidium Iodide: Multifrequency Raman and Xâ€ray Photoelectron Spectroscopy Studies. Physica Status Solidi (B): Basic Research, 2019, 256, 1900209.	1.5	14
29	Characterizing the maximum number of layers in chemically exfoliated graphene. Scientific Reports, 2019, 9, 19480.	3.3	14
30	Comparison of Doping Levels of Singleâ€Walled Carbon Nanotubes Synthesized by Arcâ€Discharge and Chemical Vapor Deposition Methods by Encapsulated Silver Chloride. Physica Status Solidi (B): Basic Research, 2018, 255, 1800178.	1.5	11
31	Comprehensive spectroscopic characterization of high purity metallicity-sorted single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2015, 252, 2512-2518.	1.5	10
32	Growth dynamics of inner tubes inside cobaltocene-filled single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	10
33	Automated Image Acquisition for Low-Dose STEM at Atomic Resolution. Microscopy and Microanalysis, 2017, 23, 809-817.	0.4	10
34	Lowâ€temperature growth of singleâ€wall carbon nanotubes inside nano test tubes. Physica Status Solidi (B): Basic Research, 2010, 247, 2730-2733.	1.5	9
35	<i>In situ</i> Raman spectroscopy studies on timeâ€dependent inner tube growth in ferroceneâ€filled large diameter singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2014, 251, 2394-2400.	1.5	8
36	Semiconducting response in singleâ€walled carbon nanotubes filled with cadmium chloride. Physica Status Solidi (B): Basic Research, 2016, 253, 2433-2439.	1.5	8

#	Article	IF	CITATIONS
37	Separation of Nickelocene-Filled Single-Walled Carbon Nanotubes by Conductivity Type and Diameter. Physica Status Solidi (B): Basic Research, 2017, 254, 1700178.	1.5	8
38	Diameter and metal-dependent growth properties of inner tubes inside metallocene-filled single-walled carbon nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 20-26.	2.1	8
39	Lossâ€spectroscopy on sparse arrays of aligned singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 2284-2287.	1.5	7
40	Comparative study on thermal and plasma enhanced CVD grown carbon nanotubes from gas phase prepared elemental and binary catalyst particles. Physica Status Solidi (B): Basic Research, 2008, 245, 1919-1922.	1.5	7
41	Challenging the nature of low-energy plasmon excitations in CaC 6 using electron energy-loss spectroscopy. Europhysics Letters, 2013, 102, 17001.	2.0	7
42	Electronic and optical properties of alkali metal doped carbon nanotubes. Physica Status Solidi (B): Basic Research, 2009, 246, 2693-2698.	1.5	6
43	FTâ€Raman characterization of the antipodal bisâ€adduct of C ₆₀ and anthracene. Physica Status Solidi (B): Basic Research, 2009, 246, 2794-2797.	1.5	5
44	On the polarization-dependent Raman spectra of aligned carbon nanotubes. Applied Physics A: Materials Science and Processing, 2012, 109, 509-513.	2.3	5
45	Spectroscopy of Filled Single-Walled Carbon Nanotubes. Nanomaterials, 2022, 12, 42.	4.1	5
46	On the Formation of Single-Walled Carbon Nanotubes in Pulsed-Laser-Assisted Chemical Vapor Deposition. Chemistry of Materials, 2008, 20, 128-134.	6.7	4
47	Adaptation of a commercial Raman spectrometer for multiline and broadband laser operation. Physica Status Solidi (B): Basic Research, 2011, 248, 2581-2584.	1.5	4
48	Endohedral Functionalization of Metallicity-Sorted Single-Walled Carbon Nanotubes. Proceedings (mdpi), 2020, 56, .	0.2	4
49	Temperature-Dependent Growth of 36 Inner Nanotubes inside Nickelocene, Cobaltocene and Ferrocene-Filled Single-Walled Carbon Nanotubes. Nanomaterials, 2021, 11, 2984.	4.1	4
50	Reduction of singleâ€walled carbon nanotube diameter to subâ€nm via feedstock. Physica Status Solidi (B): Basic Research, 2012, 249, 2404-2407.	1.5	3
51	Multifrequency Raman spectroscopy on bulk (11,10) chirality enriched semiconducting singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2014, 251, 2432-2436.	1.5	3
52	Analysis of Point Defects in Graphene Using Low Dose Scanning Transmission Electron Microscopy Imaging and Maximum Likelihood Reconstruction. Physica Status Solidi (B): Basic Research, 2017, 254, 1700176.	1.5	3
53	The influence of \hat{I}^3 -irradiation on nitrogen configuration in nitrogen-doped single-walled carbon nanotubes. Diamond and Related Materials, 2020, 101, 107569.	3.9	3
54	Length scales in orientational order of vertically aligned single walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2013, 250, 2631-2634.	1.5	2

CHRISTIAN

#	Article	IF	CITATIONS
55	From isotope labeled CH ₃ CN to N ₂ inside single-walled carbon nanotubes. Nanoscale, 2014, 6, 1525-1528.	5.6	2
56	High resolution Xâ€ray absorption on metallicity selected C ₆₀ peapods, singleâ€, and double walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2011, 248, 2544-2547.	1.5	1
57	Subâ€nanometer thin single walled carbon nanotubes: Nitrogen does the trick. Physica Status Solidi (B): Basic Research, 2012, 249, 2369-2372.	1.5	1
58	Fingerprinting seamless single-walled carbon nanotube junctions via the migration of encapsulated N ₂ molecules from bottom to top: are arrays of VA-SWNTs continuous?. Nanoscale, 2017, 9, 4002-4006.	5.6	1
59	Feedstock-dependent nitrogen configurations of nitrogen-doped single-walled carbon nanotubes in a CVD process. Nanoscale, 2018, 10, 14579-14585.	5.6	1
60	Plasma dynamics in graphite and SWNT probed by inelastic electron and X-ray scattering. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2789-2792.	0.8	0
61	Exploring Low-dimensional Carbon Materials by High-resolution Electron and Scanned Probe Microscopy. Microscopy and Microanalysis, 2015, 21, 1147-1148.	0.4	O