Daibin Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3722816/publications.pdf

Version: 2024-02-01

186265 265206 2,139 42 76 28 h-index citations g-index papers 79 79 79 2292 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Malaria in the Greater Mekong Subregion: Heterogeneity and complexity. Acta Tropica, 2012, 121, 227-239.	2.0	219
2	Changing Patterns of Malaria Epidemiology between 2002 and 2010 in Western Kenya: The Fall and Rise of Malaria. PLoS ONE, 2011, 6, e20318.	2.5	144
3	Genetic Analysis of Invasive Aedes albopictus Populations in Los Angeles County, California and Its Potential Public Health Impact. PLoS ONE, 2013, 8, e68586.	2.5	84
4	Bacterial microbiota assemblage in <i>Aedes albopictus</i> mosquitoes and its impacts on larval development. Molecular Ecology, 2018, 27, 2972-2985.	3.9	78
5	Multi-country Survey Revealed Prevalent and Novel F1534S Mutation in Voltage-Gated Sodium Channel (VGSC) Gene in Aedes albopictus. PLoS Neglected Tropical Diseases, 2016, 10, e0004696.	3.0	72
6	Multiple Resistances and Complex Mechanisms of Anopheles sinensis Mosquito: A Major Obstacle to Mosquito-Borne Diseases Control and Elimination in China. PLoS Neglected Tropical Diseases, 2014, 8, e2889.	3.0	64
7	Evidence for multiple-insecticide resistance in urban Aedes albopictus populations in southern China. Parasites and Vectors, 2018, 11, 4.	2.5	62
8	Relationship between Knockdown Resistance, Metabolic Detoxification and Organismal Resistance to Pyrethroids in Anopheles sinensis. PLoS ONE, 2013, 8, e55475.	2.5	61
9	Transmission dynamics of co-endemic Plasmodium vivax and P. falciparum in Ethiopia and prevalence of antimalarial resistant genotypes. PLoS Neglected Tropical Diseases, 2017, 11, e0005806.	3.0	57
10	Plasmodium falciparum Genetic Diversity in Western Kenya Highlands. American Journal of Tropical Medicine and Hygiene, 2007, 77, 1043-1050.	1.4	56
11	Molecular epidemiology of Plasmodium vivax and Plasmodium falciparum malaria among Duffy-positive and Duffy-negative populations in Ethiopia. Malaria Journal, 2015, 14, 84.	2.3	51
12	Transcriptome profiling of pyrethroid resistant and susceptible mosquitoes in the malaria vector, Anopheles sinensis. BMC Genomics, 2014, 15, 448.	2.8	42
13	Molecular approaches to determine the multiplicity of Plasmodium infections. Malaria Journal, 2018, 17, 172.	2.3	42
14	Landscape genetic structure and evolutionary genetics of insecticide resistance gene mutations in Anopheles sinensis. Parasites and Vectors, 2016, 9, 228.	2. 5	40
15	Molecular analysis of chloroquine resistance in <i>Plasmodium falciparum</i> in Yunnan Province, China. Tropical Medicine and International Health, 2007, 12, 1051-1060.	2.3	39
16	Molecular evidence for new sympatric cryptic species of Aedes albopictus (Diptera: Culicidae) in China: A new threat from Aedes albopictus subgroup? Parasites and Vectors, 2018, 11, 228.	2.5	39
17	Fast emerging insecticide resistance in Aedes albopictus in Guangzhou, China: Alarm to the dengue epidemic. PLoS Neglected Tropical Diseases, 2019, 13, e0007665.	3.0	39
18	Impacts of Antimalarial Drugs on Plasmodium falciparum Drug Resistance Markers, Western Kenya, 2003–2015. American Journal of Tropical Medicine and Hygiene, 2018, 98, 692-699.	1.4	39

#	Article	IF	CITATIONS
19	The Anopheles community and the role of Anopheles minimus on malaria transmission on the China-Myanmar border. Parasites and Vectors, 2013, 6, 264.	2.5	37
20	Development of Resistance to Pyrethroid in Culex pipiens pallens Population under Different Insecticide Selection Pressures. PLoS Neglected Tropical Diseases, 2015, 9, e0003928.	3.0	37
21	Costly Resistance to Parasitism. Genetics, 2005, 169, 2127-2135.	2.9	36
22	Plasmodium falciparum genetic diversity in western Kenya highlands. American Journal of Tropical Medicine and Hygiene, 2007, 77, 1043-50.	1.4	36
23	Insecticide resistance of Anopheles sinensis and An. vagus in Hainan Island, a malaria-endemic area of China. Parasites and Vectors, 2014, 7, 92.	2.5	34
24	Impact of interventions on malaria in internally displaced persons along the China–Myanmar border: 2011–2014. Malaria Journal, 2016, 15, 471.	2.3	34
25	Seasonality modeling of the distribution of Aedes albopictus in China based on climatic and environmental suitability. Infectious Diseases of Poverty, 2019, 8, 98.	3.7	34
26	Phenotypic, genotypic and biochemical changes during pyrethroid resistance selection in Anopheles gambiae mosquitoes. Scientific Reports, 2020, 10, 19063.	3.3	31
27	Molecular epidemiology of drug-resistant malaria in western Kenya highlands. BMC Infectious Diseases, 2008, 8, 105.	2.9	30
28	Genetic diversity of Leishmania donovani that causes cutaneous leishmaniasis in Sri Lanka: a cross sectional study with regional comparisons. BMC Infectious Diseases, 2017, 17, 791.	2.9	30
29	Multiplicity and molecular epidemiology of Plasmodium vivax and Plasmodium falciparum infections in East Africa. Malaria Journal, 2018, 17, 185.	2.3	30
30	Genetic diversity of Plasmodium vivax malaria in China and Myanmar. Infection, Genetics and Evolution, 2011, 11, 1419-1425.	2.3	28
31	Population dynamics and community structure of Anopheles mosquitoes along the China-Myanmar border. Parasites and Vectors, 2015, 8, 445.	2.5	27
32	Fitness consequences of Anopheles gambiae population hybridization. Malaria Journal, 2005, 4, 44.	2.3	25
33	Extensive new Anopheles cryptic species involved in human malaria transmission in western Kenya. Scientific Reports, 2020, 10, 16139.	3.3	24
34	Effects of Microclimate Condition Changes Due to Land Use and Land Cover Changes on the Survivorship of Malaria Vectors in China-Myanmar Border Region. PLoS ONE, 2016, 11, e0155301.	2.5	23
35	Analysis of asymptomatic and clinical malaria in urban and suburban settings of southwestern Ethiopia in the context of sustaining malaria control and approaching elimination. Malaria Journal, 2016, 15, 250.	2.3	22
36	Anopheles sinensis mosquito insecticide resistance: comparison of three mosquito sample collection and preparation methods and mosquito age in resistance measurements. Parasites and Vectors, 2014, 7, 54.	2.5	21

#	Article	IF	CITATIONS
37	Comparative transcriptome analysis and RNA interference reveal CYP6A8 and SNPs related to pyrethroid resistance in Aedes albopictus. PLoS Neglected Tropical Diseases, 2018, 12, e0006828.	3.0	20
38	Insecticide resistance status of Anopheles arabiensis in irrigated and non-irrigated areas in western Kenya. Parasites and Vectors, 2021, 14, 335.	2.5	19
39	Quantitative Trait Loci for Susceptibility to Tapeworm Infection in the Red Flour Beetle. Genetics, 2003, 165, 1307-1315.	2.9	19
40	Amplified Fragment Length Polymorphism Mapping of Quantitative Trait Loci for Malaria Parasite Susceptibility in the Yellow Fever Mosquito Aedes aegypti. Genetics, 2006, 173, 1337-1345.	2.9	18
41	Alterations in Plasmodium falciparum Genetic Structure Two Years after Increased Malaria Control Efforts in Western Kenya. American Journal of Tropical Medicine and Hygiene, 2013, 88, 29-36.	1.4	18
42	Life-table studies revealed significant effects of deforestation on the development and survivorship of Anopheles minimus larvae. Parasites and Vectors, 2016, 9, 323.	2.5	18
43	Larval ecology and bionomics of Anopheles funestus in highland and lowland sites in western Kenya. PLoS ONE, 2021, 16, e0255321.	2.5	18
44	Patterns of spatial genetic structures in Aedes albopictus (Diptera: Culicidae) populations in China. Parasites and Vectors, 2019, 12, 552.	2.5	17
45	Widespread multiple insecticide resistance in the major dengue vector <scp><i>Aedes albopictus</i></scp> in Hainan Province, China. Pest Management Science, 2021, 77, 1945-1953.	3.4	17
46	Spatial heterogeneity and temporal dynamics of mosquito population density and community structure in Hainan Island, China. Parasites and Vectors, 2020, 13, 444.	2.5	16
47	The effect of irrigation on malaria vector bionomics and transmission intensity in western Ethiopia. Parasites and Vectors, 2021, 14, 516.	2.5	16
48	Emerging Pyrethroid Resistance among Anopheles arabiensis in Kenya. American Journal of Tropical Medicine and Hygiene, 2018, 98, 704-709.	1.4	15
49	Burden of malaria, impact of interventions and climate variability in Western Ethiopia: an area with large irrigation based farming. BMC Public Health, 2022, 22, 196.	2.9	14
50	Prevalence and distribution of G6PD deficiency: implication for the use of primaquine in malaria treatment in Ethiopia. Malaria Journal, 2019, 18, 340.	2.3	13
51	Seasonal dynamics and molecular differentiation of three natural Anopheles species (Diptera:) Tj ETQq1 1 0.78431 and Vectors, 2020, 13, 574.	l 4 rgBT /C 2.5	Overlock 10 11
52	Transcription profiling of immune genes during parasite infection in susceptible and resistant strains of the flour beetles (Tribolium castaneum). Experimental Parasitology, 2013, 134, 61-67.	1.2	10
53	Vector Competence for DENV-2 Among Aedes albopictus (Diptera: Culicidae) Populations in China. Frontiers in Cellular and Infection Microbiology, 2021, 11, 649975.	3.9	10
54	Community structure and insecticide resistance of malaria vectors in northern-central Myanmar. Parasites and Vectors, 2022, 15, 155.	2.5	9

#	Article	IF	CITATIONS
55	Dynamics of Gene Introgression in the African Malaria Vector Anopheles gambiae. Genetics, 2006, 172, 2359-2365.	2.9	7
56	Identification of QTLs Conferring Resistance to Deltamethrin in Culex pipiens pallens. PLoS ONE, 2015, 10, e0140923.	2.5	7
57	Insecticide susceptibility status and knockdown resistance (kdr) mutation in Aedes albopictus in China. Parasites and Vectors, 2021, 14, 609.	2.5	7
58	Fine-Scale Analysis of Parasite Resistance Genes in the Red Flour Beetle, Tribolium castaneum. Genetics, 2013, 195, 253-261.	2.9	6
59	Insecticide Resistance Status and Mechanisms of Anopheles sinensis (Diptera: Culicidae) in Wenzhou, an Important Coastal Port City in China. Journal of Medical Entomology, 2019, 56, 803-810.	1.8	6
60	Multi-Indicator and Multistep Assessment of Malaria Transmission Risks in Western Kenya. American Journal of Tropical Medicine and Hygiene, 2021, 104, 1359-1370.	1.4	6
61	Predicting distribution of malaria vector larval habitats in Ethiopia by integrating distributed hydrologic modeling with remotely sensed data. Scientific Reports, 2021, 11, 10150.	3.3	6
62	Population genetic structure of the malaria vector Anopheles minimus in Thailand based on mitochondrial DNA markers. Parasites and Vectors, 2021, 14, 496.	2.5	6
63	Genetic diversity and population structure of the human malaria parasite Plasmodium falciparum surface protein Pfs47 in isolates from the lowlands in Western Kenya. PLoS ONE, 2021, 16, e0260434.	2.5	6
64	Impact of underground storm drain systems on larval ecology of Culex and Aedes species in urban environments of Southern California. Scientific Reports, 2021, 11, 12667.	3.3	5
65	Genomic Variant Analyses in Pyrethroid Resistant and Susceptible Malaria Vector, <i>Anopheles sinensis</i> . G3: Genes, Genomes, Genetics, 2020, 10, 2185-2193.	1.8	4
66	Microgeographic Epidemiology of Malaria Parasites in an Irrigated Area of Western Kenya by Deep Amplicon Sequencing. Journal of Infectious Diseases, 2021, 223, 1456-1465.	4.0	4
67	Unraveling the Complexity of Imported Malaria Infections by Amplicon Deep Sequencing. Frontiers in Cellular and Infection Microbiology, 2021, 11, 725859.	3.9	4
68	Behavioral response of insecticide-resistant mosquitoes against spatial repellent: A modified self-propelled particle model simulation. PLoS ONE, 2020, 15, e0244447.	2.5	4
69	Emerging Mosquito Resistance to Piperonyl Butoxide-Synergized Pyrethroid Insecticide and Its Mechanism. Journal of Medical Entomology, 2022, 59, 638-647.	1.8	3
70	A neural network prediction of environmental determinants of <i>Anopheles sinensis </i> henckdown resistance mutation to pyrethroids in China. Journal of Vector Ecology, 2016, 41, 295-302.	1.0	2
71	Polymorphism of Antifolate Drug Resistance in Plasmodium vivax From Local Residents and Migrant Workers Returned From the China-Myanmar Border. Frontiers in Cellular and Infection Microbiology, 2021, 11, 683423.	3.9	2
72	An Adaptive Intervention Trial Design for Finding the Optimal Integrated Strategies for Malaria Control and Elimination in Africa: A Model Simulation Study. American Journal of Tropical Medicine and Hygiene, 2021, , .	1.4	2

#	Article	IF	CITATION
73	Signatures of selection and drivers for novel mutation on transmission-blocking vaccine candidate Pfs25 gene in western Kenya. PLoS ONE, 2022, 17, e0266394.	2.5	2
74	Effects of Guangzhou seasonal climate change on the development of Aedes albopictus and its susceptibility to DENV-2. PLoS ONE, 2022, 17, e0266128.	2.5	2
75	Spatial heterogeneity of knockdown resistance mutations in the dengue vector Aedes albopictus in Guangzhou, China. Parasites and Vectors, 2022, 15, 156.	2.5	2
76	Rare Alleles and Signatures of Selection on the Immunodominant Domains of Pfs230 and Pfs48/45 in Malaria Parasites From Western Kenya. Frontiers in Genetics, 2022, 13, .	2.3	0