Qing Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/372270/publications.pdf

Version: 2024-02-01

		172457	138484
57	4,376 citations	29	58
papers	citations	h-index	g-index
EO	EO	EO	5202
58	58	58	5293
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	One-step synthesis of hierarchical Ni3Se2 nanosheet-on-nanorods/Ni foam electrodes for hybrid supercapacitors. Chinese Chemical Letters, 2022, 33, 475-479.	9.0	15
2	System Engineering Enhances Photoelectrochemical CO ₂ Reduction. Journal of Physical Chemistry C, 2022, 126, 1689-1700.	3.1	23
3	Analysis of thermal decomposition of acidified sediments in gold plants and harmless disposal of it. Journal of Hazardous Materials, 2022, 431, 128472.	12.4	1
4	A Crystalline Partially Fluorinated Triazine Covalent Organic Framework for Efficient Photosynthesis of Hydrogen Peroxide. Angewandte Chemie, 2022, 134, .	2.0	9
5	A Crystalline Partially Fluorinated Triazine Covalent Organic Framework for Efficient Photosynthesis of Hydrogen Peroxide. Angewandte Chemie - International Edition, 2022, 61, .	13.8	121
6	Few-layer carbon nitride photocatalysts for solar fuels and chemicals: Current status and prospects. Chinese Journal of Catalysis, 2022, 43, 1216-1229.	14.0	7
7	Discoidin domain receptor 1 promotes lung adenocarcinoma migration via the AKT/snail signaling axis. Molecular Biology Reports, 2022, 49, 7275-7286.	2.3	5
8	Polarization Engineering of Covalent Triazine Frameworks for Highly Efficient Photosynthesis of Hydrogen Peroxide from Molecular Oxygen and Water. Advanced Materials, 2022, 34, e2110266.	21.0	136
9	Progress and challenges in photocatalytic ammonia synthesis. Materials Advances, 2021, 2, 564-581.	5.4	32
10	Nitrogen and litter addition decreased sexual reproduction and increased clonal propagation in grasslands. Oecologia, 2021, 195, 131-144.	2.0	14
11	Planar Grapheneâ€Based Microsupercapacitors. Small, 2021, 17, e2006827.	10.0	24
12	A membrane arm of mitochondrial complex I sufficient to promote respirasome formation. Cell Reports, 2021, 35, 108963.	6.4	9
13	Rapid determination of seven synthetic dyes in casual snacks based on packed-fibers solid-phase extraction coupled with HPLC-DAD. Food Chemistry, 2021, 347, 129026.	8.2	11
14	Electrocatalytic Methane Oxidation to Ethanol via Rh/ZnO Nanosheets. Journal of Physical Chemistry C, 2021, 125, 13324-13330.	3.1	24
15	Electrochemical Methane Conversion. Small Structures, 2021, 2, 2100037.	12.0	15
16	Lithiationâ€Enabled Highâ€Density Nitrogen Vacancies Electrocatalyze CO ₂ to C ₂ Products. Advanced Materials, 2021, 33, e2103150.	21.0	48
17	Rational Design of Highâ€Concentration Ti ³⁺ in Porous Carbonâ€Doped TiO ₂ Nanosheets for Efficient Photocatalytic Ammonia Synthesis. Advanced Materials, 2021, 33, e2008180.	21.0	155
18	A hierarchical heterojunction polymer aerogel for accelerating charge transfer and separation. Journal of Materials Chemistry A, 2021, 9, 7881-7887.	10.3	13

#	Article	IF	CITATIONS
19	Selective Separation and Analysis of Catecholamines in Urine Based on Magnetic Solid Phase Extraction by Mercaptophenylboronic Acid Functionalized Fe3O4-NH2@Au Magnetic Nanoparticles Coupled with HPLC. Separations, 2021, 8, 196.	2.4	2
20	Electron Localization and Lattice Strain Induced by Surface Lithium Doping Enable Ampereâ€Level Electrosynthesis of Formate from CO ₂ . Angewandte Chemie - International Edition, 2021, 60, 25741-25745.	13.8	66
21	Electron Localization and Lattice Strain Induced by Surface Lithium Doping Enable Ampereâ€Level Electrosynthesis of Formate from CO ₂ . Angewandte Chemie, 2021, 133, 25945-25949.	2.0	19
22	Planar Grapheneâ€Based Microsupercapacitors (Small 48/2021). Small, 2021, 17, .	10.0	1
23	Mesoporous Polymeric Cyanamideâ€Triazoleâ€Heptazine Photocatalysts for Highlyâ€Efficient Water Splitting. Small, 2020, 16, e2003162.	10.0	27
24	Semiconductor photocatalysis to engineering deuterated N-alkyl pharmaceuticals enabled by synergistic activation of water and alkanols. Nature Communications, 2020, 11, 4722.	12.8	41
25	Functional group defect design in polymeric carbon nitride for photocatalytic application. APL Materials, 2020, 8, .	5.1	16
26	2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts. Applied Catalysis B: Environmental, 2020, 273, 119054.	20.2	111
27	Synergistic oxygen substitution and heterostructure construction in polymeric semiconductors for efficient water splitting. Nanoscale, 2020, 12, 13484-13490.	5.6	28
28	Hierarchical ZnO@Hybrid Carbon Core–Shell Nanowire Array on a Graphene Fiber Microelectrode for Ultrasensitive Detection of 2,4,6-Trinitrotoluene. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8547-8554.	8.0	18
29	Conductive Li _{3.08} Cr _{0.02} Si _{0.09} V _{0.9} O ₄ Anode Material: Novel "Zeroâ€Strainâ€Characteristic and Superior Electrochemical Li ⁺ Storage. Advanced Energy Materials, 2020, 10, 1904267.	19.5	53
30	A 3D-graphene fiber electrode embedded with nitrogen-rich-carbon-coated ZIF-67 for the ultrasensitive detection of adrenaline. Journal of Materials Chemistry B, 2019, 7, 5291-5295.	5.8	28
31	Ultra-small dispersed Cu _x O nanoparticles on graphene fibers for miniaturized electrochemical sensor applications. RSC Advances, 2019, 9, 28207-28212.	3.6	7
32	Graphene Fibers: Advancing Applications in Sensor, Energy Storage and Conversion. Chinese Journal of Polymer Science (English Edition), 2019, 37, 535-547.	3.8	17
33	A three-dimensional hollow graphene fiber microelectrode with shrink-effect-enabled enzyme immobilization for sensor applications. Science Bulletin, 2019, 64, 718-722.	9.0	12
34	A Type of 1 nm Molybdenum Carbide Confined within Carbon Nanomesh as Highly Efficient Bifunctional Electrocatalyst. Advanced Functional Materials, 2018, 28, 1705967.	14.9	78
35	(111) Facets-Oriented Au-Decorated Carbon Nitride Nanoplatelets for Visible-Light-Driven Overall Water Splitting. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38066-38072.	8.0	39
36	Wallâ€Mesoporous Graphitic Carbon Nitride Nanotubes for Efficient Photocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2018, 13, 3160-3164.	3.3	22

#	Article	IF	Citations
37	Significant Enhancement of Visible-Light-Driven Hydrogen Evolution by Structure Regulation of Carbon Nitrides. ACS Nano, 2018, 12, 5221-5227.	14.6	194
38	Interactions between Grapheneâ€Based Materials and Water Molecules toward Actuator and Electricityâ€Generator Applications. Small Methods, 2018, 2, 1800108.	8.6	36
39	A Cutâ€Resistant and Highly Restorable Graphene Foam. Small, 2018, 14, e1801916.	10.0	9
40	Integrated graphene systems by laser irradiation for advanced devices. Nano Today, 2017, 12, 14-30.	11.9	78
41	Meshâ€onâ€Mesh Graphitic ₃ N ₄ @Graphene for Highly Efficient Hydrogen Evolution. Advanced Functional Materials, 2017, 27, 1606352.	14.9	145
42	Graphitic carbon nitride nanofibers in seaweed-like architecture for gas chromatographic separations. Journal of Chromatography A, 2017, 1496, 133-140.	3.7	14
43	Graphene/graphitic carbon nitride hybrids for catalysis. Materials Horizons, 2017, 4, 832-850.	12.2	168
44	An Effective Co-promoted Platinum of Co–Pt/SBA-15 Catalyst for Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol. Catalysis Letters, 2016, 146, 1535-1543.	2.6	36
45	Oxidation degree of graphene reflected by morphology-tailored ZnO growth. Carbon, 2016, 107, 583-592.	10.3	3
46	Graphitic Carbon Nitride/Nitrogenâ€Rich Carbon Nanofibers: Highly Efficient Photocatalytic Hydrogen Evolution without Cocatalysts. Angewandte Chemie, 2016, 128, 11007-11011.	2.0	38
47	Graphitic Carbon Nitride/Nitrogenâ€Rich Carbon Nanofibers: Highly Efficient Photocatalytic Hydrogen Evolution without Cocatalysts. Angewandte Chemie - International Edition, 2016, 55, 10849-10853.	13.8	157
48	Effect of carbon nanosheets with different graphitization degrees as a support of noble metals on selective hydrogenation of cinnamaldehyde. RSC Advances, 2016, 6, 98356-98364.	3.6	23
49	Atomically Thin Mesoporous Nanomesh of Graphitic C ₃ N ₄ for High-Efficiency Photocatalytic Hydrogen Evolution. ACS Nano, 2016, 10, 2745-2751.	14.6	866
50	Synergistic effect of Mo ₂ N and Pt for promoted selective hydrogenation of cinnamaldehyde over Pt–Mo ₂ N/SBA-15. Catalysis Science and Technology, 2016, 6, 2403-2412.	4.1	58
51	A Graphitic ₃ N ₄ "Seaweed―Architecture for Enhanced Hydrogen Evolution. Angewandte Chemie - International Edition, 2015, 54, 11433-11437.	13.8	433
52	Sulfur-doped graphitic carbon nitride decorated with graphene quantum dots for an efficient metal-free electrocatalyst. Journal of Materials Chemistry A, 2015, 3, 1841-1846.	10.3	229
53	One-step preparation of iodine-doped graphitic carbon nitride nanosheets as efficient photocatalysts for visible light water splitting. Journal of Materials Chemistry A, 2015, 3, 4612-4619.	10.3	232
54	Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Research, 2015, 8, 1718-1728.	10.4	154

QING HAN

#	Article	lF	CITATION
55	Graphitic C3N4-Pt nanohybrids supported on a graphene network for highly efficient methanol oxidation. Science China Materials, 2015, 58, 21-27.	6.3	34
56	Spontaneous formation of Cu ₂ O–g-C ₃ N ₄ core–shell nanowires for photocurrent and humidity responses. Nanoscale, 2015, 7, 9694-9702.	5.6	54
57	Selective Hydrogenation of Cinnamaldehyde to Cinnamal Alcohol over Platinum/Graphene Catalysts. ChemCatChem, 2014, 6, 3246-3253.	3.7	80