Leonard R Stephens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3722516/publications.pdf

Version: 2024-02-01

118 papers 15,280 citations

54 h-index 21540 114 g-index

118 all docs

118 docs citations

118 times ranked 16099 citing authors

#	Article	IF	CITATIONS
1	Dual Role of Phosphatidylinositol-3,4,5-trisphosphate in the Activation of Protein Kinase B. Science, 1997, 277, 567-570.	12.6	1,131
2	Structural Determinants of Phosphoinositide 3-Kinase Inhibition by Wortmannin, LY294002, Quercetin, Myricetin, and Staurosporine. Molecular Cell, 2000, 6, 909-919.	9.7	1,102
3	Protein Kinase B Kinases That Mediate Phosphatidylinositol 3,4,5-Trisphosphate-Dependent Activation of Protein Kinase B. Science, 1998, 279, 710-714.	12.6	992
4	PI3K signalling: the path to discovery and understanding. Nature Reviews Molecular Cell Biology, 2012, 13, 195-203.	37.0	799
5	Crystal Structure and Functional Analysis of Ras Binding to Its Effector Phosphoinositide 3-Kinase Î ³ . Cell, 2000, 103, 931-944.	28.9	574
6	Phosphoinositide 3-Kinase \hat{l}' Gene Mutation Predisposes to Respiratory Infection and Airway Damage. Science, 2013, 342, 866-871.	12.6	541
7	PDGF stimulates an increase in GTP–Rac via activation of phosphoinositide 3-kinase. Current Biology, 1995, 5, 393-403.	3.9	531
8	P-Rex1, a PtdIns(3,4,5)P3- and $G\hat{1}^2\hat{1}^3$ -Regulated Guanine-Nucleotide Exchange Factor for Rac. Cell, 2002, 108, 809-821.	28.9	487
9	Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature, 1999, 402, 313-320.	27.8	453
10	Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Current Biology, 1994, 4, 385-393.	3.9	447
11	PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nature Cell Biology, 2001, 3, 679-682.	10.3	389
12	PI3K signalling in inflammation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 882-897.	2.4	380
13	Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B. Current Biology, 1998, 8, 684-691.	3.9	334
14	Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Letters, 2003, 546, 93-97.	2.8	279
15	Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood, 2005, 106, 1432-1440.	1.4	274
16	The Crystal Structure of the PX Domain from p40phox Bound to Phosphatidylinositol 3-Phosphate. Molecular Cell, 2001, 8, 829-839.	9.7	263
17	Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry. Nature Methods, 2011, 8, 267-272.	19.0	246
18	Roles of PI3Ks in leukocyte chemotaxis and phagocytosis. Current Opinion in Cell Biology, 2002, 14, 203-213.	5.4	239

#	Article	IF	Citations
19	PI(3) \hat{K}^3 has an important context-dependent role in neutrophil chemokinesis. Nature Cell Biology, 2007, 9, 86-91.	10.3	233
20	SCFAs Induce Mouse Neutrophil Chemotaxis through the GPR43 Receptor. PLoS ONE, 2011, 6, e21205.	2.5	226
21	The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nature Immunology, 2016, 17, 104-112.	14.5	192
22	$G^{\hat{1}^2\hat{1}^3}$ s and the Ras binding domain of p $110\hat{1}^3$ are both important regulators of PI3K $\hat{1}^3$ signalling in neutrophils. Nature Cell Biology, 2006, 8, 1303-1309.	10.3	167
23	Neutrophils from p40phoxâ^'/â^' mice exhibit severe defects in NADPH oxidase regulation and oxidant-dependent bacterial killing. Journal of Experimental Medicine, 2006, 203, 1927-1937.	8.5	162
24	P-Rex1 Regulates Neutrophil Function. Current Biology, 2005, 15, 1867-1873.	3.9	161
25	Structure of Lipid Kinase p $110\hat{l}^2/p85\hat{l}^2$ Elucidates an Unusual SH2-Domain-Mediated Inhibitory Mechanism. Molecular Cell, 2011, 41, 567-578.	9.7	161
26	p84, a New Gî² $\hat{1}^3$ -Activated Regulatory Subunit of the Type IB Phosphoinositide 3-Kinase p110 $\hat{1}^3$. Current Biology, 2005, 15, 566-570.	3.9	157
27	Moving towards a Better Understanding of Chemotaxis. Current Biology, 2008, 18, R485-R494.	3.9	154
28	The PX domain: a new phosphoinositide-binding module. Journal of Cell Science, 2002, 115, 1099-1105.	2.0	152
29	PTEN Regulates PI(3,4)P2 Signaling Downstream of Class I PI3K. Molecular Cell, 2017, 68, 566-580.e10.	9.7	149
30	The PX domain: a new phosphoinositide-binding module. Journal of Cell Science, 2002, 115, 1099-105.	2.0	136
31	PI3KÎ ² Plays a Critical Role in Neutrophil Activation by Immune Complexes. Science Signaling, 2011, 4, ra23.	3.6	130
32	ARAP3 Is a PI3K- and Rap-Regulated GAP for RhoA. Current Biology, 2004, 14, 1380-1384.	3.9	119
33	PtdIns3P binding to the PX domain of p40phox is a physiological signal in NADPH oxidase activation. EMBO Journal, 2006, 25, 4468-4478.	7.8	116
34	Activation of Phosphoinositide 3-Kinase \hat{I}^3 by Ras. Current Biology, 2002, 12, 1068-1075.	3.9	110
35	Colorectal carcinomas in mice lacking the catalytic subunit of PI(3)Kγ. Nature, 2000, 406, 897-902.	27.8	102
36	Regulation of P-Rex1 by Phosphatidylinositol (3,4,5)-Trisphosphate and $G^{\hat{1}^2\hat{1}^3}$ Subunits. Journal of Biological Chemistry, 2005, 280, 4166-4173.	3.4	102

#	Article	IF	CITATIONS
37	Phosphoinositide 3-kinases as drug targets in cancer. Current Opinion in Pharmacology, 2005, 5, 357-365.	3.5	100
38	Emerging evidence of signalling roles for $PI(3,4) < i > P < /i > 2$ in Class I and II PI3K-regulated pathways. Biochemical Society Transactions, 2016, 44, 307-314.	3.4	96
39	P-Rex2, a new guanine-nucleotide exchange factor for Rac. FEBS Letters, 2004, 572, 172-176.	2.8	94
40	Compensation between CSF1R+ macrophages and Foxp3+ Treg cells drives resistance to tumor immunotherapy. JCI Insight, 2018, 3, .	5.0	90
41	PI3K Signaling in Neutrophils. Current Topics in Microbiology and Immunology, 2010, 346, 183-202.	1.1	84
42	Protein Kinase B and Rac Are Activated in Parallel within a Phosphatidylinositide 3OH-kinase-controlled Signaling Pathway. Journal of Biological Chemistry, 1998, 273, 11248-11256.	3.4	83
43	Two distinct functions for PI3-kinases in macropinocytosis. Journal of Cell Science, 2013, 126, 4296-307.	2.0	83
44	CD18-dependent activation of the neutrophil NADPH oxidase during phagocytosis of Escherichia coli or Staphylococcus aureus is regulated by class III but not class I or II PI3Ks. Blood, 2008, 112, 5202-5211.	1.4	81
45	A new approach to measuring phosphoinositides in cells by mass spectrometry. Advances in Biological Regulation, 2014, 54, 131-141.	2.3	70
46	$PI3K\hat{I}^3$ Is a Key Regulator of Inflammatory Responses and Cardiovascular Homeostasis. Science, 2007, 318, 64-66.	12.6	68
47	Phosphoproteomic Analyses of Interleukin 2 Signaling Reveal Integrated JAK Kinase-Dependent and -Independent Networks in CD8 + T Cells. Immunity, 2016, 45, 685-700.	14.3	68
48	Inactivation of the Class II PI3K-C2 \hat{l}^2 Potentiates Insulin Signaling and Sensitivity. Cell Reports, 2015, 13, 1881-1894.	6.4	66
49	Lysophosphatidylinositol-Acyltransferase-1 (LPIAT1) Is Required to Maintain Physiological Levels of PtdIns and PtdInsP2 in the Mouse. PLoS ONE, 2013, 8, e58425.	2.5	65
50	Class IA Phosphoinositide 3-Kinase β and δ Regulate Neutrophil Oxidase Activation in Response to <i>Aspergillus fumigatus</i> Hyphae. Journal of Immunology, 2011, 186, 2978-2989.	0.8	64
51	Regulation of PTEN inhibition by the pleckstrin homology domain of P-REX2 during insulin signaling and glucose homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 155-160.	7.1	61
52	Regulation of Phosphatidylinositol 3-Kinase Activity and Phosphatidylinositol 3,4,5-Trisphosphate Accumulation by Neutrophil Priming Agents. Journal of Immunology, 2002, 169, 3336-3344.	0.8	59
53	GPCR activation of Ras and PI3Kl̂³ in neutrophils depends on PLCl̂²2/l̂²3 and the RasGEF RasGRP4. EMBO Journal, 2012, 31, 3118-3129.	7.8	58
54	Synthesis and biological evaluation of phosphatidylinositol phosphate affinity probes. Organic and Biomolecular Chemistry, 2010, 8, 66-76.	2.8	56

#	Article	IF	CITATIONS
55	ARAP3 is essential for formation of lamellipodia after growth factor stimulation. Journal of Cell Science, 2006, 119, 425-432.	2.0	55
56	PtdIns3P and Rac direct the assembly of the NADPH oxidase on a novel, pre-phagosomal compartment during FcR-mediated phagocytosis in primary mouse neutrophils. Blood, 2010, 116, 4978-4989.	1.4	55
57	The GTPase-activating protein ARAP3 regulates chemotaxis and adhesion-dependent processes in neutrophils. Blood, 2011, 118, 1087-1098.	1.4	54
58	<i>Dictyostelium</i> uses etherâ€linked inositol phospholipids for intracellular signalling. EMBO Journal, 2014, 33, 2188-2200.	7.8	53
59	Coincident signals from GPCRs and receptor tyrosine kinases are uniquely transduced by PI3K \hat{l}^2 in myeloid cells. Science Signaling, 2016, 9, ra82.	3.6	53
60	P-Rex1 directly activates RhoG to regulate GPCR-driven Rac signalling and actin polarity in neutrophils. Journal of Cell Science, 2014, 127, 2589-600.	2.0	50
61	PI3K Class IB Pathway in Neutrophils. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, cm3.	3.9	49
62	The role of phosphoinositides and phosphorylation in regulation of NADPH oxidase. Advances in Enzyme Regulation, 2004, 44, 279-298.	2.6	47
63	Phosphoinositol diphosphates: non-enzymic formation in vitro and occurrence in vivo in the cellular slime mold Dictyostelium. Carbohydrate Research, 1992, 234, 247-262.	2.3	46
64	cAMP Signaling of Adenylate Cyclase Toxin Blocks the Oxidative Burst of Neutrophils through Epac-Mediated Inhibition of Phospholipase C Activity. Journal of Immunology, 2017, 198, 1285-1296.	0.8	46
65	Functional Redundancy of Class I Phosphoinositide 3-Kinase (PI3K) Isoforms in Signaling Growth Factor-Mediated Human Neutrophil Survival. PLoS ONE, 2012, 7, e45933.	2.5	45
66	General synthesis of 3-phosphorylated myo-inositol phospholipids and derivatives. Journal of the Chemical Society Perkin Transactions 1, 1999, , 923-936.	0.9	43
67	LL5 \hat{l}^2 Is a Phosphatidylinositol (3,4,5)-Trisphosphate Sensor That Can Bind the Cytoskeletal Adaptor, \hat{l}^3 -Filamin. Journal of Biological Chemistry, 2003, 278, 1328-1335.	3.4	43
68	The regulatory subunits of PI3Kγ control distinct neutrophil responses. Science Signaling, 2015, 8, ra8.	3.6	42
69	How is the acyl chain composition of phosphoinositides created and does it matter?. Biochemical Society Transactions, 2019, 47, 1291-1305.	3.4	42
70	Priming of human neutrophil superoxide generation by tumour necrosis factor- $\hat{l}\pm$ is signalled by enhanced phosphatidylinositol 3,4,5-trisphosphate but not inositol 1,4,5-trisphosphate accumulation. FEBS Letters, 1998, 439, 147-151.	2.8	41
71	Phosphorylation of threonine 154 in p40phox is an important physiological signal for activation of the neutrophil NADPH oxidase. Blood, 2010, 116, 6027-6036.	1.4	40
72	Quantitation of class IA PI3Ks in mice reveals p110-free-p85s and isoform-selective subunit associations and recruitment to receptors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12176-12181.	7.1	40

#	Article	IF	Citations
73	RhoG Regulates the Neutrophil NADPH Oxidase. Journal of Immunology, 2006, 176, 5314-5320.	0.8	37
74	PI3K Class IB Pathway. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, cm2.	3.9	36
75	Synergistic activation of JNK/SAPK by interleukin-1 and platelet-derived growth factor is independent of Rac and Cdc42. Biochemical Journal, 1999, 338, 387-392.	3.7	35
76	In-depth PtdIns(3,4,5)P3 signalosome analysis identifies DAPP1 as a negative regulator of GPVI-driven platelet function. Blood Advances, 2017, 1, 918-932.	5.2	34
77	Quantitative Measurement of Phosphatidylinositol 3,4,5-trisphosphate. Methods in Enzymology, 2007, 434, 117-130.	1.0	33
78	Src Family Kinases Mediate Receptor-stimulated, Phosphoinositide 3-Kinase-dependent, Tyrosine Phosphorylation of Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides-1 in Endothelial and B Cell Lines. Journal of Biological Chemistry, 2001, 276, 42767-42773.	3.4	32
79	Class (I) Phosphoinositide 3-Kinases in the Tumor Microenvironment. Cancers, 2017, 9, 24.	3.7	31
80	The role of PI3Ks in the regulation of the neutrophil NADPH oxidase. Biochemical Society Symposia, 2007, 74, 59.	2.7	30
81	Mechanism of the regulation of type IB phosphoinositide 3OH-kinase byG-protein βγ subunits. Biochemical Journal, 2002, 362, 725-731.	3.7	29
82	The Phosphoinositide 3â€Kinase Isoform PI3Kβ Regulates Osteoclastâ€Mediated Bone Resorption in Humans and Mice. Arthritis and Rheumatology, 2014, 66, 2210-2221.	5.6	29
83	Genome organization and chromatin analysis identify transcriptional downregulation of insulin-like growth factor signaling as a hallmark of aging in developing B cells. Genome Biology, 2018, 19, 126.	8.8	29
84	The metabolism and functions of inositol pentakisphosphate and inositol hexakisphosphate. Biochemical Society Transactions, 1989, 17, 3-5.	3.4	28
85	Use of the GRP1 PH domain as a tool to measure the relative levels of PtdIns(3,4,5)P3 through a protein-lipid overlay approach. Journal of Lipid Research, 2007, 48, 726-732.	4.2	27
86	The hexosamine biosynthesis pathway and Oâ€Glc <scp>NA</scp> cylation maintain insulinâ€stimulated <scp>PI</scp> 3Kâ€ <scp>PKB</scp> phosphorylation and tumour cell growth after shortâ€term glucose deprivation. FEBS Journal, 2014, 281, 3591-3608.	4.7	26
87	Profiling of phosphoinositide molecular species in human and mouse platelets identifies new species increasing following stimulation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1121-1131.	2.4	26
88	Receptor association and tyrosine phosphorylation of S6 kinases. FEBS Journal, 2006, 273, 2023-2036.	4.7	25
89	The role of PI3Ks in the regulation of the neutrophil NADPH oxidase. Biochemical Society Symposia, 2007, 74, 59-67.	2.7	25
90	BMX Acts Downstream of PI3K to Promote Colorectal Cancer Cell Survival and Pathway Inhibition Sensitizes to the BH3 Mimetic ABT-737. Neoplasia, 2014, 16, 147-W16.	5.3	22

#	Article	IF	Citations
91	The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles. Molecular and Cellular Biology, 2016, 36, 1464-1479.	2.3	22
92	In B cells, phosphatidylinositol 5-phosphate 4-kinase‑α synthesizes PI(4,5)P2 to impact mTORC2 and Akt signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10571-10576.	7.1	21
93	An inositol 1,4,5-trisphosphate-6-kinase activity in pea roots. Planta, 1992, 187, 542-5.	3.2	20
94	Synthesis and biological evaluation of a PtdIns(3,4,5)P3 affinity matrix. Chemical Communications, 2001, , 645-646.	4.1	20
95	Perturbations of PIP3 signalling trigger a global remodelling of mRNA landscape and reveal a transcriptional feedback loop. Nucleic Acids Research, 2015, 43, gkv1015.	14.5	20
96	Investigating the effect of arachidonate supplementation on the phosphoinositide content of MCF10a breast epithelial cells. Advances in Biological Regulation, 2016, 62, 18-24.	2.3	20
97	Mechanism of the regulation of type IB phosphoinositide 30H-kinase byG-protein Î ² Î ³ subunits. Biochemical Journal, 2002, 362, 725.	3.7	19
98	3D time series analysis of cell shape using Laplacian approaches. BMC Bioinformatics, 2013, 14, 296.	2.6	19
99	Phosphoinositide 3-OH Kinase Regulates Integrin-Dependent Processes in Neutrophils by Signaling through Its Effector ARAP3. Journal of Immunology, 2013, 190, 381-391.	0.8	19
100	$\hat{G}^{\hat{1}\hat{2}\hat{1}\hat{3}}$ is a direct regulator of endogenous p101/p110 $\hat{1}^3$ and p84/p110 $\hat{1}^3$ PI3K $\hat{1}^3$ complexes in mouse neutrophils. Science Signaling, 2020, 13, .	3.6	19
101	Activation of the neutrophil NADPH oxidase by <i>Aspergillus fumigatus</i> . Annals of the New York Academy of Sciences, 2012, 1273, 68-73.	3.8	18
102	Kinase-independent synthesis of 3-phosphorylated phosphoinositides by a phosphotransferase. Nature Cell Biology, 2022, 24, 708-722.	10.3	18
103	Frontline Science: TNF-α and GM-CSF1 priming augments the role of SOS1/2 in driving activation of Ras, PI3K-γ, and neutrophil proinflammatory responses. Journal of Leukocyte Biology, 2019, 106, 815-822.	3.3	17
104	Acyl chain selection couples the consumption and synthesis of phosphoinositides. EMBO Journal, 2022, 41, .	7.8	13
105	Synergistic activation of JNK/SAPK by interleukin-1 and platelet-derived growth factor is independent of Rac and Cdc42. Biochemical Journal, 1999, 338, 387.	3.7	12
106	Structural determinants of LL5 \hat{l}^2 subcellular localisation and association with filamin C. Cellular Signalling, 2007, 19, 817-824.	3.6	12
107	Signalling via class IA PI3Ks. Advances in Enzyme Regulation, 2011, 51, 27-36.	2.6	12
108	Signaling via Class IA Phosphoinositide 3-Kinases (PI3K) in Human, Breast-Derived Cell Lines. PLoS ONE, 2013, 8, e75045.	2.5	12

#	Article	IF	Citations
109	Localizing the lipid products of PI3Kγ in neutrophils. Advances in Biological Regulation, 2016, 60, 36-45.	2.3	11
110	Insulin and ATP stimulate actin polymerization in U937 cells by a wortmannin-sensitive mechanism. FEBS Letters, 1996, 392, 66-70.	2.8	10
111	Synthesis of dipalmitoyl phosphatidylinositol 3,4-bis(phosphate) and 3,4,5-tris(phosphate) and their enantiomers. Chemical Communications, 1997, , 1635-1636.	4.1	10
112	Purification of ARAP3 and Characterization of GAP Activities. Methods in Enzymology, 2006, 406, 91-103.	1.0	8
113	More Paths to Pl3Kγ. PLoS Biology, 2013, 11, e1001594.	5.6	4
114	168 Structural analysis of a novel isoform of phosphoinositide 30H-kinase. Biochemical Society Transactions, 1997, 25, S604-S604.	3.4	3
115	Fast random walker for neutrophil cell segmentation in 3D. , 2012, , .		3
116	Local Shape Representation in 3D: from Weighted Spherical Harmonics to Spherical Wavelet., 2012,,.		3
117	Modulation of Monomeric G Proteins by Phosphoinositides. , 2010, , 1131-1139.		1
118	Modulation of Monomeric G Proteins by Phosphoinositides. , 2003, , 203-207.		0