Martin Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3721509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances on FXR-targeting therapeutics. Molecular and Cellular Endocrinology, 2022, 552, 111678.	3.2	27
2	Regulation of autophagy by bile acids and in cholestasis - CholestoPHAGY or CholeSTOPagy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166017.	3.8	16
3	Investigating the Role of Farnesoid X Receptor in Heme Biosynthesis and Ductular Reaction. Journal of the Endocrine Society, 2021, 5, A810-A811.	0.2	0
4	Bile acid-induced tissue factor activity in hepatocytes correlates with activation of farnesoid X receptor. Laboratory Investigation, 2021, 101, 1394-1402.	3.7	4
5	Metaâ€analysis and Consolidation of Farnesoid X Receptor Chromatin Immunoprecipitation Sequencing Data Across Different Species and Conditions. Hepatology Communications, 2021, 5, 1721-1736.	4.3	5
6	FXR in liver physiology: Multiple faces to regulate liver metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166133.	3.8	64
7	Methyl‣ensing Nuclear Receptor Liver Receptor Homologâ€1 Regulates Mitochondrial Function in Mouse Hepatocytes. Hepatology, 2020, 71, 1055-1069.	7.3	20
8	Drug Therapies for Chronic Cholestatic Liver Diseases. Annual Review of Pharmacology and Toxicology, 2020, 60, 503-527.	9.4	44
9	FXR-dependent Rubicon induction impairs autophagy in models of human cholestasis. Journal of Hepatology, 2020, 72, 1122-1131.	3.7	47
10	Bile acids increase steroidogenesis in cholemic mice and induce cortisol secretion in adrenocortical H295R cells via S1 <scp>PR</scp> 2, <scp>ERK</scp> and <scp>SF</scp> â€1. Liver International, 2019, 39, 2112-2123.	3.9	12
11	Obeticholic acid may increase the risk of gallstone formation in susceptible patients. Journal of Hepatology, 2019, 71, 986-991.	3.7	44
12	Preface - Animal models in liver disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 867-868.	3.8	1
13	A Comprehensive FXR Signaling Atlas Derived from Pooled ChIP-seq Data. Studies in Health Technology and Informatics, 2019, 260, 105-112.	0.3	1
14	The Hormone FGF21 Stimulates Water Drinking in Response to Ketogenic Diet and Alcohol. Cell Metabolism, 2018, 27, 1338-1347.e4.	16.2	72
15	Genetic loss of the muscarinic M ₃ receptor markedly alters bile formation and cholestatic liver injury in mice. Hepatology Research, 2018, 48, E68-E77.	3.4	10
16	Clinical-Pathological Conference Series from the Medical University of Graz. Wiener Klinische Wochenschrift, 2018, 130, 581-588.	1.9	1
17	Time for the dawn of multimodal therapies and the dusk for monoâ€ŧherapeutic trials for cholestatic liver diseases?. Liver International, 2018, 38, 991-994.	3.9	5
18	Biliary bile acids in hepatobiliary injury – What is the link?. Journal of Hepatology, 2017, 67, 619-631.	3.7	141

MARTIN WAGNER

#	Article	IF	CITATIONS
19	Recent advances in understanding and managing cholestasis. F1000Research, 2016, 5, 705.	1.6	46
20	Fibroblast growth factor 19 meets mammalian target of rapamycin: A mitogenic Têteâ€Ãâ€Tête under consideration. Hepatology, 2016, 64, 1028-1030.	7.3	2
21	Secretin and cholestasis, two sides of a coin. Hepatology, 2016, 64, 714-716.	7.3	0
22	Liver receptor homologâ€1 is a critical determinant of methylâ€pool metabolism. Hepatology, 2016, 63, 95-106.	7.3	24
23	Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes. Molecular Endocrinology, 2015, 29, 1320-1333.	3.7	10
24	Nutrient-sensing nuclear receptors coordinate autophagy. Nature, 2014, 516, 112-115.	27.8	412
25	Endoplasmic reticulum stress and glucose homeostasis. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 367-373.	2.5	26
26	Nuclear receptors in liver disease. Hepatology, 2011, 53, 1023-1034.	7.3	226
27	Nuclear Receptor Regulation of the Adaptive Response of Bile Acid Transporters in Cholestasis. Seminars in Liver Disease, 2010, 30, 160-177.	3.6	90
28	New molecular insights into the mechanisms of cholestasis. Journal of Hepatology, 2009, 51, 565-580.	3.7	241
29	Ischemia and Cholestasis: More Than (Just) the Bile Ducts!. Transplantation, 2008, 85, 1083-1085.	1.0	12
30	Hepatobiliary Transporter Expression in Intercellular Adhesion Molecule 1 Knockout and Fas Receptor-Deficient Mice after Common Bile Duct Ligation Is Independent of the Degree of Inflammation and Oxidative Stress. Drug Metabolism and Disposition, 2007, 35, 1694-1699.	3.3	12
31	CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology, 2005, 42, 420-430.	7.3	295
32	Transcriptional regulation of hepatobiliary transport systems in health and disease: implications for a rationale approach to the treatment of intrahepatic cholestasis. Annals of Hepatology, 2005, 4, 77-99.	1.5	16
33	Beyond PXR and CAR, Regulation of Xenobiotic Metabolism by other Nuclear Receptors. , 0, , 275-300.		0