Nicholas S Sokol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3721095/publications.pdf

Version: 2024-02-01

34 papers

2,203 citations

394421 19 h-index 414414 32 g-index

42 all docs 42 docs citations

times ranked

42

2882 citing authors

#	Article	IF	CITATIONS
1	Coordinated repression of pro-differentiation genes via P-bodies and transcription maintains Drosophila intestinal stem cell identity. Current Biology, 2022, 32, 386-397.e6.	3.9	14
2	A stress-responsive miRNA regulates BMP signaling to maintain tissue homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	15
3	miR-125-chinmo pathway regulates dietary restriction-dependent enhancement of lifespan in Drosophila. ELife, 2021, 10, .	6.0	13
4	Identification of Split-GAL4 Drivers and Enhancers That Allow Regional Cell Type Manipulations of the <i>Drosophila melanogaster</i> Intestine. Genetics, 2020, 216, 891-903.	2.9	11
5	Identification and Characterization of Breakpoints and Mutations on <i>Drosophila melanogaster</i> Balancer Chromosomes. G3: Genes, Genomes, Genetics, 2020, 10, 4271-4285.	1.8	12
6	I-KCKT allows dissection-free RNA profiling of adult Drosophila intestinal progenitor cells. Development (Cambridge), 2020, 148, .	2.5	9
7	<i>let-7-Complex</i> MicroRNAs Regulate Broad-Z3, Which Together with Chinmo Maintains Adult Lineage Neurons in an Immature State. G3: Genes, Genomes, Genetics, 2020, 10, 1393-1401.	1.8	6
8	The Microbiome Sets the Stage for Cholera. Trends in Microbiology, 2020, 28, 430-432.	7.7	1
9	Canonical nucleators are dispensable for stress granule assembly in intestinal progenitors. Journal of Cell Science, 2020, 133, .	2.0	21
10	Lactate dehydrogenase and glycerol-3-phosphate dehydrogenase cooperatively regulate growth and carbohydrate metabolism during <i>Drosophila melanogaster</i> larval development. Development (Cambridge), 2019, 146, .	2.5	28
11	A let-7-to-miR-125 MicroRNA Switch Regulates Neuronal Integrity and Lifespan in Drosophila. PLoS Genetics, 2016, 12, e1006247.	3.5	58
12	Analysis of MicroRNA Function in Drosophila. Methods in Molecular Biology, 2016, 1478, 79-94.	0.9	9
13	Neural stem cell-encoded temporal patterning delineates an early window of malignant susceptibility in Drosophila. ELife, 2016, 5, .	6.0	66
14	Starving for more: Nutrient sensing by LIN-28 in adult intestinal progenitor cells. Fly, 2015, 9, 173-177.	1.7	4
15	Lin-28 promotes symmetric stem cell division and drives adaptive growth in the adult <i>Drosophila</i> intestine. Development (Cambridge), 2015, 142, 3478-3487.	2.5	41
16	Drosha-independent DGCR8/Pasha pathway regulates neuronal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1421-1426.	7.1	38
17	ADAR mediates differential expression of polycistronic microRNAs. Nucleic Acids Research, 2014, 42, 5245-5255.	14.5	34
18	MicroRNAs as Components of Systemic Signaling Pathways in Drosophila melanogaster. Current Topics in Developmental Biology, 2013, 105, 97-123.	2.2	24

#	Article	IF	CITATIONS
19	The Role of MicroRNAs in Muscle Development. Current Topics in Developmental Biology, 2012, 99, 59-78.	2.2	28
20	let-7-Complex MicroRNAs Regulate the Temporal Identity of Drosophila Mushroom Body Neurons via chinmo. Developmental Cell, 2012, 23, 202-209.	7.0	115
21	Hormonal activation of <i>let-7-C</i> microRNAs via EcR is required for adult <i>Drosophila melanogaster</i> morphology and function. Development (Cambridge), 2012, 139, 1788-1797.	2.5	80
22	Small temporal RNAs in animal development. Current Opinion in Genetics and Development, 2012, 22, 368-373.	3.3	48
23	MicroRNA Pathways in Drosophila. , 2012, , 611-627.		0
24	MicroRNAs in Drosophila Development. International Review of Cell and Molecular Biology, 2011, 286, 1-65.	3.2	44
25	Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature, 2010, 466, 637-641.	27.8	353
26	<i>Drosophila let-7</i> microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes and Development, 2008, 22, 1591-1596.	5.9	194
27	An Overview of the Identification, Detection, and Functional Analysis of Drosophila MicroRNAs. Methods in Molecular Biology, 2008, 420, 319-334.	0.9	10
28	Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes and Development, 2005, 19, 2343-2354.	5.9	372
29	Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and Broad-Complex gene activity. Developmental Biology, 2003, 259, 9-18.	2.0	290
30	Drosophila filamin is required for follicle cell motility during oogenesis. Developmental Biology, 2003, 260, 260-272.	2.0	46
31	Drosophila Filamin encoded by the cheerio locus is a component of ovarian ring canals. Current Biology, 1999, 9, 1221-1230.	3.9	100
32	Formation of the Drosophila Ovarian Ring Canal Inner Rim Depends on <i>cheerio</i> . Genetics, 1997, 145, 1063-1072.	2.9	70
33	Reversed temporal region asymmetries of P300 topography in left- and right-handed schizophrenic subjects. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1992, 84, 532-537.	2.0	35
34	Molecular Dissection of a Conserved Cluster of miRNAs Identifies Critical Structural Determinants That Mediate Differential Processing. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	2