Bradford C Berk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3720627/publications.pdf

Version: 2024-02-01

262 papers

25,333 citations

91 h-index 7518 151 g-index

266 all docs 266
docs citations

266 times ranked 22252 citing authors

#	Article	IF	CITATIONS
1	Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature, 2012, 485, 512-516.	27.8	1,019
2	Laminar Shear Stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 677-685.	2.4	958
3	ECM remodeling in hypertensive heart disease. Journal of Clinical Investigation, 2007, 117, 568-575.	8.2	765
4	Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature, 1995, 375, 247-250.	27.8	710
5	Elevation of C-reactive protein in "active―coronary artery disease. American Journal of Cardiology, 1990, 65, 168-172.	1.6	531
6	Big Mitogen-activated Protein Kinase 1 (BMK1) Is a Redox-sensitive Kinase. Journal of Biological Chemistry, 1996, 271, 16586-16590.	3.4	396
7	Phosphorylation of Endothelial Nitric Oxide Synthase in Response to Fluid Shear Stress. Circulation Research, 1996, 79, 984-991.	4.5	385
8	Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nature Cell Biology, 2002, 4, 743-749.	10.3	371
9	Ligand-Independent Activation of Vascular Endothelial Growth Factor Receptor 2 by Fluid Shear Stress Regulates Activation of Endothelial Nitric Oxide Synthase. Circulation Research, 2003, 93, 354-363.	4.5	366
10	Cyclophilin A Is a Secreted Growth Factor Induced by Oxidative Stress. Circulation Research, 2000, 87, 789-796.	4.5	358
11	Differential Activation of Mitogen-Activated Protein Kinases by H ₂ O ₂ and O ₂ ^{â^'} in Vascular Smooth Muscle Cells. Circulation Research, 1995, 77, 29-36.	4.5	349
12	Vascular Smooth Muscle Growth: Autocrine Growth Mechanisms. Physiological Reviews, 2001, 81, 999-1030.	28.8	341
13	Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II–induced aortic aneurysms. Nature Medicine, 2009, 15, 649-656.	30.7	332
14	Identification of Flow-dependent Endothelial Nitric-oxide Synthase Phosphorylation Sites by Mass Spectrometry and Regulation of Phosphorylation and Nitric Oxide Production by the Phosphatidylinositol 3-Kinase Inhibitor LY294002. Journal of Biological Chemistry, 1999, 274, 30101-30108.	3.4	296
15	c-Src Is Required for Oxidative Stress-mediated Activation of Big Mitogen-activated Protein Kinase 1 (BMK1). Journal of Biological Chemistry, 1997, 272, 20389-20394.	3.4	257
16	Purification and Identification of Secreted Oxidative Stress-induced Factors from Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2000, 275, 189-196.	3.4	245
17	Angiotensin II Signal Transduction in Vascular Smooth Muscle. Circulation Research, 1997, 80, 607-616.	4.5	240
18	Src and Cas Mediate JNK Activation but Not ERK1/2 and p38 Kinases by Reactive Oxygen Species. Journal of Biological Chemistry, 2000, 275, 11706-11712.	3.4	230

#	Article	IF	CITATIONS
19	Reactive Oxygen Species as Mediators of Signal Transduction in Cardiovascular Disease. Trends in Cardiovascular Medicine, 1998, 8, 59-64.	4.9	227
20	Fluid Shear Stress Stimulates Mitogen-Activated Protein Kinase in Endothelial Cells. Circulation Research, 1995, 77, 869-878.	4.5	226
21	Thioredoxin. Circulation Research, 2003, 93, 1029-1033.	4.5	221
22	p90RSK Is a Serum-stimulated Na+/H+ Exchanger Isoform-1 Kinase. Journal of Biological Chemistry, 1999, 274, 20206-20214.	3.4	217
23	Cyclophilin A Is a Proinflammatory Cytokine that Activates Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1186-1191.	2.4	214
24	Angiotensin II and the Endothelium. Hypertension, 2005, 45, 163-169.	2.7	211
25	Flow Shear Stress and Atherosclerosis: A Matter of Site Specificity. Antioxidants and Redox Signaling, 2011, 15, 1405-1414.	5.4	211
26	Fluid shear stress inhibits vascular inflammation by decreasing thioredoxin-interacting protein in endothelial cells. Journal of Clinical Investigation, 2005, 115, 733-738.	8.2	210
27	Protein Kinase C-ζ Mediates Angiotensin II Activation of ERK1/2 in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 1997, 272, 6146-6150.	3.4	205
28	Cyclophilin A Is Secreted by a Vesicular Pathway in Vascular Smooth Muscle Cells. Circulation Research, 2006, 98, 811-817.	4.5	204
29	The multifunctional GIT family of proteins. Journal of Cell Science, 2006, 119, 1469-1475.	2.0	204
30	Vinpocetine inhibits NF-κB–dependent inflammation via an IKK-dependent but PDE-independent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9795-9800.	7.1	203
31	Endothelial Atheroprotective and Antiâ€inflammatory Mechanisms. Annals of the New York Academy of Sciences, 2001, 947, 93-111.	3.8	195
32	Upregulation of Phosphodiesterase 1A1 Expression Is Associated With the Development of Nitrate Tolerance. Circulation, 2001, 104, 2338-2343.	1.6	189
33	Cyclophilin A Mediates Vascular Remodeling by Promoting Inflammation and Vascular Smooth Muscle Cell Proliferation. Circulation, 2008, 117, 3088-3098.	1.6	189
34	MAP Kinase Activation by Flow in Endothelial Cells. Circulation Research, 1996, 79, 310-316.	4.5	188
35	Flow-Induced Vascular Remodeling in the Mouse. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 2185-2191.	2.4	183
36	c-Jun N-terminal Kinase Activation by Hydrogen Peroxide in Endothelial Cells Involves Src-dependent Epidermal Growth Factor Receptor Transactivation. Journal of Biological Chemistry, 2001, 276, 16045-16050.	3.4	182

#	Article	IF	CITATIONS
37	Transactivation of Vascular Endothelial Growth Factor (VEGF) Receptor Flk-1/KDR Is Involved in Sphingosine 1-Phosphate-stimulated Phosphorylation of Akt and Endothelial Nitric-oxide Synthase (eNOS). Journal of Biological Chemistry, 2002, 277, 42997-43001.	3.4	182
38	Fyn and JAK2 Mediate Ras Activation by Reactive Oxygen Species. Journal of Biological Chemistry, 1999, 274, 21003-21010.	3.4	180
39	Functional Role of Phosphodiesterase 3 in Cardiomyocyte Apoptosis. Circulation, 2005, 111, 2469-2476.	1.6	180
40	Insulin-Like Growth Factor-1 Enhances Inflammatory Responses in Endothelial Cells. Circulation Research, 2002, 90, 1222-1230.	4.5	171
41	Mitogen-activated Protein (MAP) Kinase Is Regulated by the MAP Kinase Phosphatase (MKP-1) in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 1995, 270, 7161-7166.	3.4	168
42	Receptor Heterodimerization: Essential Mechanism for Platelet-Derived Growth Factor-Induced Epidermal Growth Factor Receptor Transactivation. Molecular and Cellular Biology, 2001, 21, 6387-6394.	2.3	166
43	Chronic Physiological Shear Stress Inhibits Tumor Necrosis Factor–Induced Proinflammatory Responses in Rabbit Aorta Perfused Ex Vivo. Circulation, 2003, 108, 1619-1625.	1.6	166
44	Fluid Shear Stress Stimulates Big Mitogen-activated Protein Kinase 1 (BMK1) Activity in Endothelial Cells. Journal of Biological Chemistry, 1999, 274, 143-150.	3.4	165
45	Mechanotransduction in Endothelial Cells: Temporal Signaling Events in Response to Shear Stress. Journal of Vascular Research, 1997, 34, 212-219.	1.4	163
46	Functional Interplay Between Angiotensin II and Nitric Oxide. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 26-36.	2.4	163
47	Cyclophilin A is an inflammatory mediator that promotes atherosclerosis in apolipoprotein E–deficient mice. Journal of Experimental Medicine, 2011, 208, 53-66.	8.5	163
48	Vascular Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1722-1728.	2.4	160
49	Transactivation: a Novel Signaling Pathway from Angiotensin II to Tyrosine Kinase Receptors. Journal of Molecular and Cellular Cardiology, 2001, 33, 3-7.	1.9	159
50	Thioredoxin Interacting Protein: Redox Dependent and Independent Regulatory Mechanisms. Antioxidants and Redox Signaling, 2012, 16, 587-596.	5.4	158
51	Activation of Extracellular Signal–Regulated Kinases (ERK1/2) by Angiotensin II Is Dependent on c-Src in Vascular Smooth Muscle Cells. Circulation Research, 1998, 82, 7-12.	4.5	152
52	Angiotensin II Induces Transactivation of Two Different Populations of the Platelet-derived Growth Factor \hat{l}^2 Receptor. Journal of Biological Chemistry, 2000, 275, 15926-15932.	3.4	151
53	Oxidative Stress and Vascular Smooth Muscle Cell Growth: A Mechanistic Linkage by Cyclophilin A. Antioxidants and Redox Signaling, 2010, 12, 675-682.	5.4	151
54	Big Mitogen-Activated Protein Kinase (BMK1)/ERK5 Protects Endothelial Cells From Apoptosis. Circulation Research, 2004, 94, 362-369.	4.5	150

#	Article	IF	CITATIONS
55	Agonist-stimulated cytoskeletal reorganization and signal transduction at focal adhesions in vascular smooth muscle cells require c-Src. Journal of Clinical Investigation, 1999, 103, 789-797.	8.2	150
56	Glutathiolation Regulates Tumor Necrosis Factor-α–Induced Caspase-3 Cleavage and Apoptosis. Circulation Research, 2007, 100, 213-219.	4.5	149
57	Increased Expression of Axl Tyrosine Kinase After Vascular Injury and Regulation by G Protein–Coupled Receptor Agonists in Rats. Circulation Research, 1998, 83, 697-704.	4.5	145
58	Angiotensin II Activates pp60 ^{c-} ^{src} in Vascular Smooth Muscle Cells. Circulation Research, 1995, 77, 1053-1059.	4.5	142
59	Molecular Cloning of Mouse ERK5/BMK1 Splice Variants and Characterization of ERK5 Functional Domains. Journal of Biological Chemistry, 2001, 276, 10870-10878.	3.4	141
60	Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: A hypothesis for calcium-dependent and calcium-independent events activated by flow. Journal of Biomechanics, 1995, 28, 1439-1450.	2.1	139
61	Hydrogen peroxide-induced c-fos expression is mediated by arachidonic acid release: role of protein kinase C. Nucleic Acids Research, 1993, 21, 1259-1263.	14.5	137
62	Combination of Vitamins C and E Alters the Response to Coronary Balloon Injury in the Pig. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 156-165.	2.4	134
63	p38 Kinase Is a Negative Regulator of Angiotensin II Signal Transduction in Vascular Smooth Muscle Cells. Circulation Research, 1998, 83, 824-831.	4.5	132
64	Opposing Effects of Reactive Oxygen Species and Cholesterol on Endothelial Nitric Oxide Synthase and Endothelial Cell Caveolae. Circulation Research, 1999, 85, 29-37.	4.5	131
65	Src and Multiple MAP Kinase Activation in Cardiac Hypertrophy and Congestive Heart Failure Under Chronic Pressure-overload: Comparison with Acute Mechanical Stretch. Journal of Molecular and Cellular Cardiology, 2001, 33, 1637-1648.	1.9	131
66	Atheroprotective Signaling Mechanisms Activated by Steady Laminar Flow in Endothelial Cells. Circulation, 2008, 117, 1082-1089.	1.6	131
67	The role of MAP kinases in endothelial activation. Vascular Pharmacology, 2002, 38, 271-273.	2.1	127
68	Reactive Oxygen Species Activate p90 Ribosomal S6 Kinase via Fyn and Ras. Journal of Biological Chemistry, 2000, 275, 1739-1748.	3.4	125
69	Oxidized LDL Stimulates Mitogen-Activated Protein Kinases in Smooth Muscle Cells and Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 141-148.	2.4	122
70	Fluid Shear Stress-Mediated Signal Transduction: How Do Endothelial Cells Transduce Mechanical Force into Biological Responses?. Annals of the New York Academy of Sciences, 1997, 811, 12-24.	3.8	121
71	Role of Phosphodiesterase 3 in NO/cGMP-Mediated Antiinflammatory Effects in Vascular Smooth Muscle Cells. Circulation Research, 2003, 93, 406-413.	4.5	121
72	Role of Nuclear Ca ²⁺ /Calmodulin-Stimulated Phosphodiesterase 1A in Vascular Smooth Muscle Cell Growth and Survival. Circulation Research, 2006, 98, 777-784.	4.5	121

#	Article	IF	Citations
73	Vitamins C and E Inhibit O 2 â^ Production in the Pig Coronary Artery. Circulation, 1997, 96, 3593-3601.	1.6	121
74	Angiotensin II signaling pathways mediated by tyrosine kinases. International Journal of Biochemistry and Cell Biology, 2003, 35, 780-783.	2.8	118
75	A positive feedback loop of phosphodiesterase 3 (PDE3) and inducible cAMP early repressor (ICER) leads to cardiomyocyte apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14771-14776.	7.1	118
76	Gas6 inhibits apoptosis in vascular smooth muscle: role of Axl kinase and Akt. Journal of Molecular and Cellular Cardiology, 2004, 37, 881-887.	1.9	115
77	The Hinge-Helix 1 Region of Peroxisome Proliferator-Activated Receptor Î ³ 1 (PPARÎ ³ 1) Mediates Interaction with Extracellular Signal-Regulated Kinase 5 and PPARÎ ³ 1 Transcriptional Activation: Involvement in Flow-Induced PPARÎ ³ Activation in Endothelial Cells. Molecular and Cellular Biology, 2004, 24, 8691-8704.	2.3	113
78	State-of-the-Art Methods for Evaluation of Angiogenesis and Tissue Vascularization. Circulation Research, 2015, 116, e99-132.	4.5	113
79	PKC-Îμ Is Required for Mechano-sensitive Activation of ERK1/2 in Endothelial Cells. Journal of Biological Chemistry, 1997, 272, 31251-31257.	3.4	112
80	Axl, A Receptor Tyrosine Kinase, Mediates Flow-Induced Vascular Remodeling. Circulation Research, 2006, 98, 1446-1452.	4. 5	111
81	14-3-3 Binding to Na+/H+ Exchanger Isoform-1 Is Associated with Serum-dependent Activation of Na+/H+ Exchange. Journal of Biological Chemistry, 2001, 276, 15794-15800.	3.4	110
82	Role of Mitogen-Activated Protein Kinases in Ischemia and Reperfusion Injury. Circulation Research, 2000, 86, 607-609.	4. 5	109
83	Sphingosine 1-Phosphate Transactivates the Platelet-Derived Growth Factor Î ² Receptor and Epidermal Growth Factor Receptor in Vascular Smooth Muscle Cells. Circulation Research, 2004, 94, 1050-1058.	4.5	107
84	Shear Stress Stimulation of p130 Tyrosine Phosphorylation Requires Calcium-dependent c-Src Activation. Journal of Biological Chemistry, 1999, 274, 26803-26809.	3.4	106
85	Laminar flow inhibits TNF-induced ASK1 activation by preventing dissociation of ASK1 from its inhibitor 14-3-3. Journal of Clinical Investigation, 2001, 107, 917-923.	8.2	106
86	Strain-Dependent Vascular Remodeling. Circulation, 2004, 110, 220-226.	1.6	104
87	PKCζ mediates disturbed flow-induced endothelial apoptosis via p53 SUMOylation. Journal of Cell Biology, 2011, 193, 867-884.	5.2	100
88	Platelet-Derived Growth Factor Ligand and Receptor Expression in Response to Altered Blood Flow In Vivo. Circulation Research, 1997, 81, 320-327.	4.5	97
89	PARP-1 Inhibition Prevents Oxidative and Nitrosative Stress–Induced Endothelial Cell Death via Transactivation of the VEGF Receptor 2. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 711-717.	2.4	94
90	TR4 nuclear receptor functions as a fatty acid sensor to modulate CD36 expression and foam cell formation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13353-13358.	7.1	94

#	Article	IF	CITATIONS
91	Differential Regulation of p90 Ribosomal S6 Kinase and Big Mitogen–Activated Protein Kinase 1 by Ischemia/Reperfusion and Oxidative Stress in Perfused Guinea Pig Hearts. Circulation Research, 1999, 85, 1164-1172.	4.5	93
92	Activation of mitogen-activated protein kinases and p90 ribosomal S6 kinase in failing human hearts with dilated cardiomyopathy. Cardiovascular Research, 2002, 53, 131-137.	3.8	92
93	Flow Shear Stress Stimulates Gab1 Tyrosine Phosphorylation to Mediate Protein Kinase B and Endothelial Nitric-oxide Synthase Activation in Endothelial Cells. Journal of Biological Chemistry, 2005, 280, 12305-12309.	3.4	92
94	Thioredoxin in the cardiovascular system. Journal of Molecular Medicine, 2006, 84, 997-1003.	3.9	90
95	Strain-dependent differences in responses to exercise training in inbred and hybrid mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R1006-R1013.	1.8	89
96	Cyclophilin A - Promising New Target in Cardiovascular Therapy Circulation Journal, 2010, 74, 2249-2256.	1.6	88
97	The Gas6/Axl System. Trends in Cardiovascular Medicine, 1999, 9, 250-253.	4.9	87
98	NAD(P)H oxidase-derived reactive oxygen species regulate angiotensin-II induced adventitial fibroblast phenotypic differentiation. Biochemical and Biophysical Research Communications, 2006, 339, 337-343.	2.1	87
99	The Biology of Angiotensin II Receptors. American Journal of Kidney Diseases, 1993, 22, 745-754.	1.9	86
100	Angiotensin II Stimulates p21-Activated Kinase in Vascular Smooth Muscle Cells. Circulation Research, 1998, 82, 1272-1278.	4.5	86
101	GIT1 Functions as a Scaffold for MEK1-Extracellular Signal-Regulated Kinase 1 and 2 Activation by Angiotensin II and Epidermal Growth Factor. Molecular and Cellular Biology, 2004, 24, 875-885.	2.3	86
102	Losartan Metabolite EXP3179 Activates Akt and Endothelial Nitric Oxide Synthase via Vascular Endothelial Growth Factor Receptor-2 in Endothelial Cells. Circulation, 2005, 112, 1798-1805.	1.6	85
103	Novel Mechanisms of Endothelial Mechanotransduction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2378-2386.	2.4	85
104	Redox Signals that Regulate the Vascular Response to Injury. Thrombosis and Haemostasis, 1999, 82, 810-817.	3.4	83
105	Hydrogen Peroxide Activates the Gas6-Axl Pathway in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2004, 279, 28766-28770.	3.4	82
106	Thioredoxin: a multifunctional antioxidant enzyme in kidney, heart and vessels. Current Opinion in Nephrology and Hypertension, 2005, 14, 149-153.	2.0	81
107	GIT1 Mediates Src-dependent Activation of Phospholipase \hat{Cl}^3 by Angiotensin II and Epidermal Growth Factor. Journal of Biological Chemistry, 2003, 278, 49936-49944.	3.4	79
108	Thioredoxin Interacting Protein Promotes Endothelial Cell Inflammation in Response to Disturbed Flow by Increasing Leukocyte Adhesion and Repressing Kruppel-Like Factor 2. Circulation Research, 2012, 110, 560-568.	4.5	79

#	Article	IF	Citations
109	Vasoactive effects of growth factors. Biochemical Pharmacology, 1989, 38, 219-225.	4.4	77
110	Cyclophilin A Promotes Cardiac Hypertrophy in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1116-1123.	2.4	76
111	Flow-Induced Vascular Remodeling in the Rat Carotid Artery Diminishes With Age. Circulation Research, 1997, 81, 311-319.	4.5	74
112	Pharmacologic roles of heparin and glucocorticoids to prevent restenosis after coronary angioplasty. Journal of the American College of Cardiology, 1991, 17, 111-117.	2.8	72
113	Cyclosporin A Inhibits Flow-mediated Activation of Endothelial Nitric-oxide Synthase by Altering Cholesterol Content in Caveolae. Journal of Biological Chemistry, 2004, 279, 48794-48800.	3.4	72
114	Urokinase Plasminogen Activator Stimulates Vascular Smooth Muscle Cell Proliferation Via Redox-Dependent Pathways. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 801-807.	2.4	72
115	Fluid Shear Stress Attenuates Hydrogen Peroxide–Induced c-Jun NH2-Terminal Kinase Activation via a Glutathione Reductase–Mediated Mechanism. Circulation Research, 2002, 91, 712-718.	4.5	71
116	Inhibiting p90 Ribosomal S6 Kinase Prevents Na + -H + Exchanger–Mediated Cardiac Ischemia-Reperfusion Injury. Circulation, 2006, 113, 2516-2523.	1.6	71
117	Fluid Shear Stress Activates Proline-Rich Tyrosine Kinase via Reactive Oxygen Species–Dependent Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 1790-1796.	2.4	70
118	GIT1 Is a Scaffold for ERK1/2 Activation in Focal Adhesions. Journal of Biological Chemistry, 2005, 280, 27705-27712.	3.4	70
119	Stress and Vascular Responses: Atheroprotective Effect of Laminar Fluid Shear Stress in Endothelial Cells: Possible Role of Mitogen-Activated Protein Kinases. Journal of Pharmacological Sciences, 2003, 91, 172-176.	2.5	68
120	PKCζ decreases eNOS protein stability via inhibitory phosphorylation of ERK5. Blood, 2010, 116, 1971-1979.	1.4	67
121	GIT1 Mediates Thrombin Signaling in Endothelial Cells. Circulation Research, 2004, 94, 1041-1049.	4.5	65
122	Glucose 6-Phosphate Dehydrogenase Is Regulated Through c-Src–Mediated Tyrosine Phosphorylation in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 895-901.	2.4	64
123	Angiotensin II-mediated signal transduction pathways. Current Hypertension Reports, 2002, 4, 167-171.	3.5	63
124	Epidermal Growth Factor Receptor Transactivation Is Regulated by Glucose in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2003, 278, 35049-35056.	3.4	61
125	Shear Stress-mediated Extracellular Signal-regulated Kinase Activation Is Regulated by Sodium in Endothelial Cells. Journal of Biological Chemistry, 1999, 274, 20144-20150.	3.4	59
126	BMK1/ERK5 Is a Novel Regulator of Angiogenesis by Destabilizing Hypoxia Inducible Factor $1\hat{l}_{\pm}$. Circulation Research, 2005, 96, 1145-1151.	4.5	58

#	Article	IF	CITATIONS
127	Chapter 2 Physiologic Stressâ€Mediated Signaling in the Endothelium. Methods in Enzymology, 2008, 443, 25-44.	1.0	58
128	Thioredoxin-Interacting Protein Mediates TRX1 Translocation to the Plasma Membrane in Response to Tumor Necrosis Factor-α. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1890-1897.	2.4	58
129	Angiotensin II Stimulation of Vascular Smooth Muscle. Journal of Cardiovascular Pharmacology, 1989, 14, S27-S33.	1.9	58
130	Flow Antagonizes TNF-α Signaling in Endothelial Cells by Inhibiting Caspase-Dependent PKCζ Processing. Circulation Research, 2007, 101, 97-105.	4. 5	57
131	Disturbed Flow-Induced Endothelial Proatherogenic Signaling <i>Via</i> Regulating Post-Translational Modifications and Epigenetic Events. Antioxidants and Redox Signaling, 2016, 25, 435-450.	5.4	57
132	Angiotensin II-induced vascular smooth muscle cell hypertrophy: PDGF A-chain mediates the increase in cell size. Journal of Cellular Physiology, 1993, 154, 368-380.	4.1	56
133	Retinoids. Circulation Research, 2000, 87, 355-362.	4. 5	56
134	Acetylation of cyclophilin A is required for its secretion and vascular cell activation. Cardiovascular Research, 2014, 101, 444-453.	3.8	56
135	Angiotensin II increases phosphodiesterase 5A expression in vascular smooth muscle cells: A mechanism by which angiotensin II antagonizes cGMP signaling. Journal of Molecular and Cellular Cardiology, 2005, 38, 175-184.	1.9	54
136	Extracellular Cyclophilin A, Especially Acetylated, Causes Pulmonary Hypertension by Stimulating Endothelial Apoptosis, Redox Stress, and Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1138-1146.	2.4	54
137	Angiotensin II Stimulates p90 ^{rsk} in Vascular Smooth Muscle Cells. Circulation Research, 1997, 81, 268-273.	4.5	53
138	Na+/H+antiporter gene expression increases during retinoic acid-induced granulocytic differentiation of HL60 cells. Journal of Cellular Physiology, 1992, 151, 361-366.	4.1	52
139	Endothelial NO Synthase Is Increased in Regenerating Endothelium After Denuding Injury of the Rat Aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 1312-1321.	2.4	52
140	Angiotensin II mediated signal transduction. Regulatory Peptides, 2000, 95, 1-7.	1.9	51
141	G-Protein–Coupled Receptor Kinase Interacting Protein-1 Is Required for Pulmonary Vascular Development. Circulation, 2009, 119, 1524-1532.	1.6	51
142	Ribosomal Protein L17, RpL17, is an Inhibitor of Vascular Smooth Muscle Growth and Carotid Intima Formation. Circulation, 2012, 126, 2418-2427.	1.6	50
143	Ca 2+-Dependent Mitogen-Activated Protein Kinase Activation in Spontaneously Hypertensive Rat Vascular Smooth Muscle Defines a Hypertensive Signal Transduction Phenotype. Circulation Research, 1996, 78, 962-970.	4.5	50
144	The lipid peroxidation product 4-hydroxynonenal inhibits NLRP3 inflammasome activation and macrophage pyroptosis. Cell Death and Differentiation, 2022, 29, 1790-1803.	11.2	48

#	Article	IF	CITATIONS
145	Src Family Kinase and Adenosine Differentially Regulate Multiple MAP Kinases in Ischemic Myocardium: Modulation of MAP Kinases Activation by Ischemic Preconditioning. Journal of Molecular and Cellular Cardiology, 2001, 33, 1989-2005.	1.9	47
146	Interleukin-18 and Macrophage Migration Inhibitory Factor Are Associated With Increased Carotid Intima–Media Thickening. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 295-300.	2.4	47
147	GIT1 Mediates VEGF-Induced Podosome Formation in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 202-208.	2.4	47
148	Comparison of Simultaneous Measurements of Blood Pressure by Tail-Cuff and Carotid Arterial Methods in Conscious Spontaneously Hypertensive and Wistar-Kyoto Rats. Clinical and Experimental Hypertension, 2006, 28, 57-72.	1.3	46
149	Fluid shear stress inhibits TNF-mediated JNK activation via MEK5–BMK1 in endothelial cells. Biochemical and Biophysical Research Communications, 2008, 370, 159-163.	2.1	46
150	Angiotensin II Stimulates MAP Kinase Kinase Kinase Activity in Vascular Smooth Muscle Cells. Circulation Research, 1996, 79, 1007-1014.	4.5	46
151	Flow Activates ERK1/2 and Endothelial Nitric Oxide Synthase via a Pathway Involving PECAM1, SHP2, and Tie2. Journal of Biological Chemistry, 2005, 280, 29620-29624.	3.4	45
152	Extracellular and Intracellular Cyclophilin A, Native and Post-Translationally Modified, Show Diverse and Specific Pathological Roles in Diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 986-993.	2.4	45
153	Hypoxia and HIF-1α Stability. Circulation Research, 2002, 91, 4-6.	4.5	44
154	Shear Stress Is Differentially Regulated Among Inbred Rat Strains. Circulation Research, 2003, 92, 1001-1009.	4.5	44
155	Glutaredoxin Mediates Akt and eNOS Activation by Flow in a Glutathione Reductase-Dependent Manner. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1283-1288.	2.4	44
156	Effects of glucocorticoids on Na+/H+ exchange and growth in cultured vascular smooth muscle cells. Journal of Cellular Physiology, 1988, 137, 391-401.	4.1	43
157	Antiapoptotic Effect of Endothelin-1 in Rat Cardiomyocytes In Vitro. Hypertension, 2003, 41, 1156-1163.	2.7	43
158	Gas6–Axl Receptor Signaling Is Regulated by Glucose in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 886-891.	2.4	43
159	The Third Cytoplasmic Loop of the Angiotensin II Type 1 Receptor Exerts Differential Effects on Extracellular Signal–Regulated Kinase (ERK1/ERK2) and Apoptosis via Ras- and Rap1-Dependent Pathways. Circulation Research, 2000, 86, 729-736.	4.5	42
160	Smooth muscle apoptosis and vascular remodeling. Current Opinion in Hematology, 2008, 15, 250-254.	2.5	42
161	Impaired spine formation and learning in GPCR kinase 2 interacting protein-1 (GIT1) knockout mice. Brain Research, 2010, 1317, 218-226.	2.2	42
162	$14\text{-}3\text{-}3\hat{l}^2$ Is a p90 Ribosomal S6 Kinase (RSK) Isoform 1-binding Protein That Negatively Regulates RSK Kinase Activity. Journal of Biological Chemistry, 2003, 278, 18376-18383.	3.4	40

#	Article	IF	CITATIONS
163	A 90-kD Na ⁺ -H ⁺ Exchanger Kinase Has Increased Activity in Spontaneously Hypertensive Rat Vascular Smooth Muscle Cells. Hypertension, 1997, 29, 1265-1272.	2.7	40
164	Atheroprotective mechanisms activated by fluid shear stress in endothelial cells. Drug News and Perspectives, 2002, 15, 133.	1.5	40
165	Flow-Mediated Signaling Modulates Endothelial Cell Phenotype. Endothelium: Journal of Endothelial Cell Research, 2006, 13, 375-384.	1.7	39
166	Cyclophilin A Is Required for Angiotensin Il–Induced p47phox Translocation to Caveolae in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2147-2153.	2.4	39
167	Angiotensin II, atherosclerosis, and aortic aneurysms. Journal of Clinical Investigation, 2000, 105, 1525-1526.	8.2	39
168	Bcr Kinase Activation by Angiotensin II Inhibits Peroxisome Proliferator-Activated Receptor \hat{I}^3 Transcriptional Activity in Vascular Smooth Muscle Cells. Circulation Research, 2009, 104, 69-78.	4.5	38
169	ERK1/2 Associates with the c-Met-binding Domain of Growth Factor Receptor-bound Protein 2 (Grb2)-associated Binder-1 (Gab1). Journal of Biological Chemistry, 2004, 279, 29691-29699.	3.4	37
170	GIT1 Mediates HDAC5 Activation by Angiotensin II in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 892-898.	2.4	37
171	GPCR kinase 2 interacting protein 1 (GIT1) regulates osteoclast function and bone mass. Journal of Cellular Physiology, 2010, 225, 777-785.	4.1	37
172	Thioredoxin-Interacting Protein Mediates Sustained VEGFR2 Signaling in Endothelial Cells Required for Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 737-743.	2.4	37
173	Angiotensin Type 2 Receptor (AT2R): A Challenging Twin. Science Signaling, 2003, 2003, pe16-pe16.	3.6	36
174	Inhibition of Tumor Necrosis Factor-α–Induced SHP-2 Phosphatase Activity by Shear Stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1775-1781.	2.4	36
175	Axl Mediates Vascular Remodeling Induced by Deoxycorticosterone Acetate–Salt Hypertension. Hypertension, 2007, 50, 1057-1062.	2.7	36
176	Angiotensin II Type 2 Receptor Expression After Vascular Injury. Hypertension, 2006, 48, 942-949.	2.7	35
177	Vascular shear stress and activation of inflammatory genes. Current Atherosclerosis Reports, 2006, 8, 240-244.	4.8	34
178	Role of p90 Ribosomal S6 Kinase–Mediated Prorenin-Converting Enzyme in Ischemic and Diabetic Myocardium. Circulation, 2006, 113, 1787-1798.	1.6	33
179	The role of tyrosine phosphorylation in angiotensin II-mediated intracellular signalling. Cardiovascular Research, 1995, 30, 530-536.	3.8	32
180	Contrasting Effects of Urokinase and Tissue-Type Plasminogen Activators on Neointima Formation and Vessel Remodelling after Arterial Injury. Journal of Vascular Research, 2004, 41, 268-276.	1.4	30

#	Article	IF	CITATIONS
181	Impaired Angiogenesis during Fracture Healing in GPCR Kinase 2 Interacting Protein-1 (GIT1) Knock Out Mice. PLoS ONE, 2014, 9, e89127.	2.5	30
182	Protein kinase C-mediated intracellular alkalinization in rat and rabbit aortic smooth muscle cells. European Journal of Pharmacology, 1987, 141, 503-506.	3.5	29
183	Thioredoxin-Interacting Protein Mediates Nuclear–to–Plasma Membrane Communication. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1264-1270.	2.4	29
184	Thioredoxin-Interacting Protein Is a Biomechanical Regulator of Src Activity. Circulation Research, 2014, 114, 1125-1132.	4.5	29
185	Protein Kinase C-α and Protein Kinase C-ε Are Required for Grb2-associated Binder-1 Tyrosine Phosphorylation in Response to Platelet-derived Growth Factor. Journal of Biological Chemistry, 2002, 277, 23216-23222.	3.4	28
186	Angiotensin II Stimulates Tyrosine Phosphorylation of Phospholipase C-γ–Associated Proteins. Circulation Research, 1997, 81, 550-557.	4.5	28
187	An epidermal growth factor (EGF) â€dependent interaction between GIT1 and sorting nexin 6 promotes degradation of the EGF receptor. FASEB Journal, 2008, 22, 3607-3616.	0.5	27
188	SECONDARY SIGNALLING MECHANISMS IN ANGIOTENSIN II-STIMULATED VASCULAR SMOOTH MUSCLE CELLS. Clinical and Experimental Pharmacology and Physiology, 1988, 15, 105-112.	1.9	26
189	Novel approaches to treat oxidative stress and cardiovascular diseases. Transactions of the American Clinical and Climatological Association, 2007, 118, 209-14.	0.5	26
190	Interleukin-18 and interleukin-18 binding protein levels before and after percutaneous coronary intervention in patients with and without recent myocardial infarction. American Journal of Cardiology, 2004, 94, 1285-1287.	1.6	25
191	G protein coupled receptor kinase 2 interacting protein 1 (GIT1) is a novel regulator of mitochondrial biogenesis in heart. Journal of Molecular and Cellular Cardiology, 2011, 51, 769-776.	1.9	24
192	14-3-3 \hat{l}^2 Binds to Big Mitogen-activated Protein Kinase 1 (BMK1/ERK5) and Regulates BMK1 Function. Journal of Biological Chemistry, 2004, 279, 8787-8791.	3.4	23
193	Atheroprone Flow Activation of the Sterol Regulatory Element Binding Protein 2 and Nod-Like Receptor Protein 3 Inflammasome Mediates Focal Atherosclerosis. Circulation, 2013, 128, 579-582.	1.6	23
194	G-Protein–Coupled Receptor-2–Interacting Protein-1 Is Required for Endothelial Cell Directional Migration and Tumor Angiogenesis via Cortactin-Dependent Lamellipodia Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 419-426.	2.4	23
195	Plasminogen Activator Expression Correlates with Genetic Differences in Vascular Remodeling. Journal of Vascular Research, 2004, 41, 481-490.	1.4	22
196	GIT1 is a novel MEK1–ERK1/2 scaffold that localizes to focal adhesions. Cell Biology International, 2010, 34, 41-47.	3.0	22
197	p62 Binding to Protein Kinase C ζ Regulates Tumor Necrosis Factor α–Induced Apoptotic Pathway in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2974-2980.	2.4	22
198	Cyclophilin A modulates bone marrow-derived CD117+ cells and enhances ischemia-induced angiogenesis via the SDF-1/CXCR4 axis. International Journal of Cardiology, 2016, 212, 324-335.	1.7	22

#	Article	IF	CITATIONS
199	Urokinase Induces Matrix Metalloproteinase-9/Gelatinase B Expression in THP-1 Monocytes via ERK1/2 and Cytosolic Phospholipase A ₂ Activation and Eicosanoid Production. Journal of Vascular Research, 2006, 43, 482-490.	1.4	21
200	Impaired Vasorelaxation in Inbred Mice Is Associated with Alterations in Both Nitric Oxide and Super Oxide Pathways. Journal of Vascular Research, 2007, 44, 504-512.	1.4	19
201	Quantitative trait loci for exercise training responses in FVB/NJ and C57BL/6J mice. Physiological Genomics, 2009, 40, 15-22.	2.3	19
202	Gas6-Axl Pathway. Hypertension, 2010, 56, 105-111.	2.7	19
203	Vascular-derived reactive oxygen species for homeostasis and diseases. Nitric Oxide - Biology and Chemistry, 2011, 25, 211-215.	2.7	19
204	Retinoids: New Insight Into Smooth Muscle Cell Growth Inhibition. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 724-726.	2.4	18
205	p160 Bcr Mediates Platelet-Derived Growth Factor Activation of Extracellular Signal-Regulated Kinase in Vascular Smooth Muscle Cells. Circulation, 2001, 104, 1399-1406.	1.6	18
206	Symposium Presentations. Journal of the American College of Cardiology, 2005, 46, A5-A70.	2.8	18
207	Oligonucleotide Microarrays Reveal Regulated Genes Related to Inward Arterial Remodeling Induced by Urokinase Plasminogen Activator. Journal of Vascular Research, 2009, 46, 177-187.	1.4	17
208	G-Protein–Coupled Receptor Kinase Interacting Protein-1 Mediates Intima Formation by Regulating Vascular Smooth Muscle Proliferation, Apoptosis, and Migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 999-1005.	2.4	17
209	G-Protein-Coupled Receptor-2-Interacting Protein-1 Controls Stalk Cell Fate by Inhibiting Delta-like 4-Notch1 Signaling. Cell Reports, 2016, 17, 2532-2541.	6.4	17
210	Glutaredoxin 1 mediates the protective effect of steady laminar flow on endothelial cells against oxidative stress-induced apoptosis via inhibiting Bim. Scientific Reports, 2017, 7, 15539.	3.3	17
211	Restenosis following coronary balloon angioplasty. Trends in Cardiovascular Medicine, 1991, 1, 107-111.	4.9	16
212	Differential Expression of Genes from Nitrate-Tolerant Rat Aorta. Journal of Vascular Research, 2002, 39, 304-310.	1.4	15
213	The Novel Role of the C-terminal Region of SHP-2. Journal of Biological Chemistry, 2002, 277, 29330-29341.	3.4	15
214	Scaffolds Direct Src-Specific Signaling in Response to Angiotensin II: New Roles for Cas and GIT1. Molecular Pharmacology, 2004, 65, 822-825.	2.3	15
215	Endothelial-to-Mesenchymal Transition and Inflammation Play Key Roles in Cyclophilin A–Induced Pulmonary Arterial Hypertension. Hypertension, 2020, 76, 1113-1123.	2.7	15
216	Tissue-Resident Bone Marrow–Derived Progenitor Cells. Circulation Research, 2005, 97, 955-957.	4.5	14

#	Article	IF	CITATIONS
217	Phosphorylation of G Protein–Coupled Receptor Kinase 2–Interacting Protein 1 Tyrosine 392 Is Required for Phospholipase C-γ Activation and Podosome Formation in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1976-1982.	2.4	14
218	Cyclophilin A is an important mediator of platelet function by regulating integrin $\hat{l}\pm llb\hat{l}^23$ bidirectional signalling. Thrombosis and Haemostasis, 2014, 111, 873-882.	3.4	14
219	Decreased BMP2 signal in GIT1 knockout mice slows bone healing. Molecular and Cellular Biochemistry, 2014, 397, 67-74.	3.1	14
220	Circulating smooth muscle progenitor cells: novel players in plaque stability. Cardiovascular Research, 2007, 77, 445-447.	3.8	12
221	Genetic Modifier Loci Linked to Intima Formation Induced by Low Flow in the Mouse Carotid. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 47-53.	2.4	12
222	Flow-Mediated Vascular Remodeling in Hypertension. Stroke, 2009, 40, 582-590.	2.0	12
223	NOX5 as a therapeutic target in cerebral ischemic injury. Journal of Clinical Investigation, 2019, 129, 1530-1532.	8.2	12
224	Cezanne Paints Inflammation by Regulating Ubiquitination. Circulation Research, 2013, 112, 1526-1528.	4.5	10
225	The Role of PB1 Domain Proteins in Endothelial Cell Dysfunction and Disease. Antioxidants and Redox Signaling, 2015, 22, 1243-1256.	5.4	10
226	The RSK Inhibitor BIX02565 Limits Cardiac Ischemia/Reperfusion Injury. Journal of Cardiovascular Pharmacology and Therapeutics, 2016, 21, 177-186.	2.0	10
227	Angiotensin II Signal Transduction in Vascular Smooth Muscle. , 1996, , 187-204.		10
228	Angiotensin II Receptors and Angiotensin II-Stimulated Signal Transduction. Heart Failure Reviews, 1998, 3, 87-99.	3.9	8
229	Genetic determinants of vascular remodelling. Canadian Journal of Cardiology, 2006, 22, 68-118.	1.7	8
230	Phosphodiesterase 10A Is a Key Mediator of Lung Inflammation. Journal of Immunology, 2021, 206, 3010-3020.	0.8	8
231	Role of hypertension in the metabolic syndrome: Who is affected?. Current Hypertension Reports, 2005, 7, 418-426.	3.5	7
232	Identification of a Genetic Locus on Chromosome 11 That Regulates Leukocyte Infiltration in Mouse Carotid Artery. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1014-1019.	2.4	7
233	p90 ribosomal S6 kinase regulates activity of the renin–angiotensin system: A pathogenic mechanism for ischemia–reperfusion injury. Journal of Molecular and Cellular Cardiology, 2011, 51, 272-275.	1.9	6
234	Role of PDE10A in vascular smooth muscle cell hyperplasia and pathological vascular remodelling. Cardiovascular Research, 2022, 118, 2703-2717.	3.8	6

#	Article	IF	Citations
235	Redox redux: protecting the ischemic myocardium. Journal of Clinical Investigation, 2012, 122, 30-32.	8.2	6
236	Role of Angiotensin-Converting Enzyme and Neutral Endopeptidase in Flow-Dependent Remodeling. Journal of Vascular Research, 2004, 41, 148-156.	1.4	5
237	Angiotensin II: A Devious Activator of Mineralocorticoid Receptor-Dependent Gene Expression. Circulation Research, 2005, 96, 610-611.	4.5	5
238	Nck1 is a critical adaptor between proatherogenic blood flow, inflammation, and atherosclerosis. Journal of Clinical Investigation, 2020, 130, 3968-3970.	8.2	5
239	HDAC7 supports vascular integrity. Nature Medicine, 2006, 12, 997-998.	30.7	4
240	Vascular Smooth Muscle Cell Remodeling in Atherosclerosis and Restenosis. , 2012, , 1301-1309.		4
241	Intima modifier locus 2 controls endothelial cell activation and vascular permeability. Physiological Genomics, 2014, 46, 624-633.	2.3	4
242	Strainâ€selective efficacy of sacubitril/valsartan on carotid fibrosis in response to injury in two inbred mouse strains. British Journal of Pharmacology, 2019, 176, 2795-2807.	5.4	4
243	Natriuretic Peptide Receptor 2 Locus Contributes to Carotid Remodeling. Journal of the American Heart Association, 2020, 9, e014257.	3.7	4
244	Protein Kinases that Mediate Redox-Sensitive Signal Transduction. Developments in Cardiovascular Medicine, 2000, , 335-348.	0.1	3
245	Cyclophilin A: A Mediator of Cardiovascular Pathology. Journal of the Korean Society of Hypertension, 2011, 17, 133.	0.2	2
246	The Protective Role of Natriuretic Peptide Receptor 2 against High Salt Injury in the Renal Papilla. American Journal of Pathology, 2019, 189, 1721-1731.	3.8	2
247	Oligonucleotide Microarrays Identified Potential Regulatory Genes Related to Early Outward Arterial Remodeling Induced by Tissue Plasminogen Activator. Frontiers in Physiology, 2019, 10, 493.	2.8	2
248	Oxidative Stress and Vascular Remodeling. Developments in Cardiovascular Medicine, 1997, , 277-304.	0.1	2
249	Vascular Smooth Muscle. , 2006, , 17-30.		2
250	Chapter 18 Signal transduction cascades responsive to oxidative stress in the vasculature. Cell and Molecular Response To Stress, 2001, , 239-252.	0.4	1
251	The Changing Delivery of Patient Care. , 2015, , 203-211.		1
252	Reactive Oxygen Species as Mediators of Signal Transduction in Cardiovascular Disease. Developments in Cardiovascular Medicine, 2000, , 57-70.	0.1	1

#	Article	IF	CITATIONS
253	Flow-Dependent Protein Kinases: Role in no formation. Journal of Vascular and Interventional Radiology, 1999, 10, 958.	0.5	0
254	Identification of Secreted Oxidative Stress-induced Factors (SOXF) and Associated Proteins: Proteomics in Vascular Biology., 0,, 307-316.		0
255	Atheroprotective mechanisms of flow: inhibition of apoptosis. International Congress Series, 2004, 1262, 129-132.	0.2	0
256	Chapter 14 Chronic lung vascular hyperpermeability. Advances in Molecular and Cell Biology, 2005, , 401-422.	0.1	0
257	Response to Letter Regarding Article, "Role of p90 Ribosomal S6 Kinase-Mediated Prorenin-Converting Enzyme in Ischemia and Diabetic Myocardium― Circulation, 2006, 114, .	1.6	0
258	Corrigendum to "p90 ribosomal S6 kinase regulates activity of the renin–angiotensin system: A pathogenic mechanism for ischemia–reperfusion injury―[J. Mol. Cell. Cardiol. 51 (2011) 272–275]. Journal of Molecular and Cellular Cardiology, 2012, 52, 292.	1.9	0
259	Kinase Signaling in the Cardiovascular System. , 2001, , 657-677.		0
260	Quantitative trait loci for exercise capacity and response to training in FVB/NJ and C57BL/6J mice. FASEB Journal, 2009, 23, .	0.5	0
261	Thioredoxin in the Cardiovascular System—Towards a Thioredoxin-Based Antioxidative Therapy. , 2010, , 499-516.		0
262	The International Society on Thrombosis and Haemostasis–XXth Annual Congress. IDrugs: the Investigational Drugs Journal, 2005, 8, 904-6.	0.7	0