Jan Ivens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3720002/publications.pdf

Version: 2024-02-01

	279798	175258
3,993	23	52
citations	h-index	g-index
- 4	- 4	2524
54	54	3594
docs citations	times ranked	citing authors
	citations 54	3,993 23 citations h-index 54 54

#	Article	IF	CITATIONS
1	The effect of the scalp on the effectiveness of bicycle helmets' anti-rotational acceleration technologies. Traffic Injury Prevention, 2021, 22, 51-56.	1.4	6
2	Characterization of cork and cork agglomerates under compressive loads by means of energy absorption diagrams. European Journal of Wood and Wood Products, 2021, 79, 719-731.	2.9	9
3	Experimental study of natural cork and cork agglomerates as a substitute for expanded polystyrene foams under compressive loads. Wood Science and Technology, 2021, 55, 419-443.	3. 2	5
4	Analysis of the capability of cork and cork agglomerates to absorb multiple compressive quasi-static loading cycles. European Journal of Wood and Wood Products, 2021, 79, 1195.	2.9	2
5	Split-disk test with 3D Digital Image Correlation strain measurement for filament wound composites. Composite Structures, 2021, 263, 113686.	5 . 8	11
6	Flax treatment with strategic enzyme combinations: Effect on fiber fineness and mechanical properties of composites. Journal of Reinforced Plastics and Composites, 2020, 39, 231-245.	3.1	8
7	Methodology of dry and wet compressibility measurement. Composites Part A: Applied Science and Manufacturing, 2020, 128, 105672.	7.6	15
8	Characterization of the Tensile Behavior of Expanded Polystyrene Foam as a Function of Density and Strain Rate. Advanced Engineering Materials, 2020, 22, 2000794.	3 . 5	10
9	Production and characterization of bamboo and flax fiber reinforced polylactic acid filaments for fused deposition modeling (FDM). Polymer Composites, 2019, 40, 1951-1963.	4.6	87
10	Flax treatment with strategic enzyme combinations: Effect on chemical fiber composition and ease of fiber extraction. Biotechnology Reports (Amsterdam, Netherlands), 2019, 23, e00358.	4.4	6
11	Sorption behaviour of bamboo fibre reinforced composites, why do they retain their properties?. Composites Part A: Applied Science and Manufacturing, 2019, 119, 48-60.	7.6	25
12	Effect of enzymatic treatment of flax on fineness of fibers and mechanical performance of composites. Composites Part A: Applied Science and Manufacturing, 2019, 123, 190-199.	7.6	20
13	European bamboo fibres for composites applications, study on the seasonal influence. Industrial Crops and Products, 2019, 133, 304-316.	5.2	26
14	Bamboo fibres sourced from three global locations: A microstructural, mechanical and chemical composition study. Journal of Reinforced Plastics and Composites, 2019, 38, 397-412.	3.1	20
15	One-shot production of large-scale 3D woven fabrics with integrated prismatic shaped cavities and their applications. Materials and Design, 2019, 165, 107578.	7.0	17
16	Effect of enzymatic treatment of flax on chemical composition and the extent of fiber separation. BioResources, 2019, 14, 3012-3030.	1.0	17
17	Discontinuities as a way to influence the failure mechanisms and tensile performance of hybrid carbon fiber/self-reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 2018, 107, 354-365.	7.6	24
18	Designing safer composite helmets to reduce rotational accelerations during oblique impacts. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2018, 232, 479-491.	1.8	12

#	Article	IF	Citations
19	Decoupling shear and compression properties in composite polymer foams by introducing anisotropy at macro level. Journal of Reinforced Plastics and Composites, 2018, 37, 657-667.	3.1	3
20	Optimization of Composite Foam Concept for Protective Helmets to Mitigate Rotational Acceleration of the Head in Oblique Impacts: A Parametric Study. Advanced Engineering Materials, 2018, 20, 1700443.	3.5	5
21	Effect of polymer foam anisotropy on energy absorption during combined shear-compression loading. Journal of Cellular Plastics, 2018, 54, 597-613.	2.4	25
22	Deformation of EPS Foam Under Combined Compression-Shear Loading: Experimental and Computational Analysis. EPJ Web of Conferences, 2018, 183, 01009.	0.3	1
23	Enzymatic treatment of flax for use in composites. Biotechnology Reports (Amsterdam, Netherlands), 2018, 20, e00294.	4.4	38
24	Evaluation of the head-helmet sliding properties in an impact test. Journal of Biomechanics, 2018, 75, 28-34.	2.1	37
25	Deformation response of EPS foam under combined compression-shear loading. Part II: High strain rate dynamic tests. International Journal of Mechanical Sciences, 2018, 145, 9-23.	6.7	22
26	In-depth study of the microstructure of bamboo fibres and their relation to the mechanical properties. Journal of Reinforced Plastics and Composites, 2018, 37, 1099-1113.	3.1	45
27	Machine compliance in compression tests. AIP Conference Proceedings, 2018, , .	0.4	1
28	Deformation response of EPS foam under combined compression-shear loading. Part I: Experimental design and quasi-static tests. International Journal of Mechanical Sciences, 2018, 144, 480-489.	6.7	33
29	Evaluation of the Extraction Efficiency of Enzymatically Treated Flax Fibers. , 2018, , 37-49.		1
30	Anisotropic polyethersulfone foam for bicycle helmet liners to reduce rotational acceleration during oblique impact. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017, 231, 851-861.	1.8	17
31	Digital image correlation as a strain measurement technique for fibre tensile tests. Composites Part A: Applied Science and Manufacturing, 2017, 99, 76-83.	7.6	31
32	Benchmarking of depth of field for large out-of-plane deformations with single camera digital image correlation. Optics and Lasers in Engineering, 2017, 91, 134-143.	3.8	4
33	Novel Composite Foam Concept for Head Protection in Oblique Impacts. Advanced Engineering Materials, 2017, 19, 1700059.	3.5	13
34	On the assessment of bridging vein rupture associated acute subdural hematoma through finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 530-539.	1.6	12
35	Localization of carbon nanotubes in resin rich zones of a woven composite linked to the dispersion state. Nanocomposites, 2015, 1, 204-213.	4.2	15
36	Structural and mechanical characterisation of bridging veins: A review. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 41, 222-240.	3.1	35

#	Article	IF	CITATIONS
37	Determination of the optimal flax fibre preparation for use in unidirectional flax–epoxy composites. Journal of Reinforced Plastics and Composites, 2014, 33, 493-502.	3.1	68
38	Bamboo fibres for reinforcement in composite materials: Strength Weibull analysis. Composites Part A: Applied Science and Manufacturing, 2014, 61, 115-125.	7.6	107
39	Static behavior of three-dimensional ıntegrated core sandwich composites subjected to three-point bending. Journal of Reinforced Plastics and Composites, 2013, 32, 664-678.	3.1	27
40	Quasi-static behavior of three-dimensional integrated core sandwich composites under compression loading. Journal of Reinforced Plastics and Composites, 2013, 32, 289-299.	3.1	19
41	Low velocity impact characteristics of 3D integrated core sandwich composites. Textile Reseach Journal, 2012, 82, 945-962.	2.2	30
42	The Physical and Antimicrobial Effects of Microwave Heating and Alcohol Immersion on Catheters that Are Reused for Clean Intermittent Catheterisation. European Urology, 2004, 46, 641-646.	1.9	29
43	Influence of processing and chemical treatment of flax fibres on their composites. Composites Science and Technology, 2003, 63, 1241-1246.	7.8	411
44	Natural fibres: can they replace glass in fibre reinforced plastics?. Composites Science and Technology, 2003, 63, 1259-1264.	7.8	2,165
45	Mechanical properties of composite panels based on woven sandwich-fabric preforms. Composites Part A: Applied Science and Manufacturing, 2000, 31, 671-680.	7.6	79
46	Interfacial Effects on the Mechanical Properties of Glass/Phenolic Composites. Advanced Composites Letters, 1999, 8, 096369359900800.	1.3	3
47	The fatigue behaviour and damage development of 3D woven sandwich composites. Composite Structures, 1998, 43, 35-45.	5.8	51
48	Micro-Stress Analysis of Woven Fabric Composites by Multilevel Decomposition. Journal of Composite Materials, 1998, 32, 623-651.	2.4	42
49	A three-dimensional micromechanical analysis of woven-fabric composites: II. Elastic analysis. Composites Science and Technology, 1996, 56, 1317-1327.	7.8	74
50	A three-dimensional micromechanical analysis of woven-fabric composites: I. Geometric analysis. Composites Science and Technology, 1996, 56, 1303-1315.	7.8	82
51	Interlaminar fracture toughness of CFRP influenced by fibre surface treatment: Part 1. Experimental results. Composites Science and Technology, 1995, 54, 133-145.	7.8	105
52	Interlaminar fracture toughness of CFRP influenced by fibre surface treatment: Part 2. Modelling of the interface effect. Composites Science and Technology, 1995, 54, 147-159.	7.8	28
53	Interfaces in polymer matrix composites from micromechanical tests to macromechanical properties. Makromolekulare Chemie Macromolecular Symposia, 1993, 75, 85-98.	0.6	7
54	Digital Image Correlation for On-Line Wall Thickness Measurements in Thick Gauge Thermoforming. Key Engineering Materials, 0, 554-557, 1583-1591.	0.4	8