
Zhu Haikui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3719817/publications.pdf Version: 2024-02-01

ΖΗΠ ΗΛΙΚΠΙ

#	Article	IF	CITATIONS
1	Structural dependence of the microwave dielectric properties of Cr ³⁺ -substituted ZnGa ₂ O ₄ spinel ceramics: crystal distortion and vibration mode studies. Journal of Materials Chemistry C, 2019, 7, 8261-8268.	5.5	35
2	Influence of inverse spinel structured CuGa ₂ O ₄ on microwave dielectric properties of normal spinel ZnGa ₂ O ₄ ceramics. Journal of the American Ceramic Society, 2018, 101, 1646-1654.	3.8	32
3	One-step facile synthesis of carbon-supported PdAu nanoparticles and their electrochemical property and stability. Journal of Alloys and Compounds, 2015, 619, 452-457.	5.5	27
4	Sintering, densification and crystallization of Ca–Al–B–Si–O glass/Al2O3 composites for LTCC application. Journal of Materials Science: Materials in Electronics, 2013, 24, 3985-3994.	2.2	25
5	Sintering temperature dependence of dielectric properties and energy-storage properties in (Ba,Zr)TiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 514-518.	2.2	24
6	Synthesis and enhanced supercapacitor performance of carbon selfâ€doping graphitic carbon nitride/NiS electrode material. Journal of the American Ceramic Society, 2021, 104, 1554-1567.	3.8	23
7	Microstructure and dielectric properties of glass/Al2O3 composites with various low softening point borosilicate glasses. Journal of Materials Science: Materials in Electronics, 2012, 23, 2130-2139.	2.2	20
8	Microstructure and microwave dielectric characteristics of CaO–B2O3–SiO2 glass ceramics. Journal of Materials Science: Materials in Electronics, 2009, 20, 1135-1139.	2.2	19
9	Influence of Nd doping on microwave dielectric properties of SrTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2018, 29, 2743-2747.	2.2	18
10	Insights into BiOCl with tunable nanostructures and their photocatalytic and electrochemical activities. Journal of Materials Science, 2016, 51, 4342-4348.	3.7	17
11	Improved microwave dielectric properties of Mg4Nb2O9 ceramics with CaO–B2O3–SiO2 glass additions. Journal of Materials Science: Materials in Electronics, 2013, 24, 3546-3550.	2.2	15
12	Study on properties of Ca2Zn4Ti15O36 ceramics with CaO-B2O3-SiO2 glass. Journal of Materials Science: Materials in Electronics, 2013, 24, 1090-1094.	2.2	10
13	Influence of Zr/Ti ratio on the dielectric properties of BaZr x Ti1â^'x O3 ceramics for high-voltage capacitor applications. Journal of Materials Science: Materials in Electronics, 2016, 27, 9572-9576.	2.2	10
14	Sintering behavior and microwave dielectric properties of Y2O3–ZnO doped (Zr0.8Sn0.2)TiO4 ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 7750-7754.	2.2	10
15	Effects of borosilicate glass additions on microstructures and magnetic properties of low temperature co-fired NiCuZn ferrites. Journal of Materials Science: Materials in Electronics, 2013, 24, 4713-4717.	2.2	8
16	Fabrication of a composite of platinum, N-g-C3N4 and Ketjen Black for photo-electrochemical methanol oxidation. Journal of Materials Science, 2017, 52, 8444-8454.	3.7	8
17	Synthesis mechanism and microwave dielectric properties of Co0.5Ti0.5NbO4 ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 3380-3385.	2.2	8
18	Low temperature sintering and dielectric properties of Ca-Ba-Al-B-Si-O glass/Al2O3 composites for LTCC applications. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 1085-1090.	1.0	7

Zhu Haikui

#	Article	IF	CITATIONS
19	Effects of Nb2O5–WO3 additive on microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites. Journal of Materials Science: Materials in Electronics, 2015, 26, 2397-2402.	2.2	7
20	Effect of CuO and TiO2 on the sintering temperature and dielectric properties of BaWO4 for LTCC applications. Ceramics International, 2020, 46, 27063-27070.	4.8	7
21	Low temperature sintering and properties of Ca–Al–B–Si–O glass/ceramic composites with various ceramic fillers. Journal of Materials Science: Materials in Electronics, 2013, 24, 2161-2168.	2.2	6
22	Study on properties of forsterite/cordierite ceramic composites. Journal of Materials Science: Materials in Electronics, 2010, 21, 231-235.	2.2	5
23	Microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites with SiO2–CaO–Na2O–K2O glass. Journal of Materials Science: Materials in Electronics, 2016, 27, 198-202.	2.2	4
24	Performance of borosilicate glass/Ba3(VO4)2 ceramic composites and chemical stability with Ag electrodes. Journal of the European Ceramic Society, 2020, 40, 3600-3607.	5.7	4
25	Effects of Bi2O3–WO3 additive on microstructure and magnetic properties of low-temperature-fired MgCuZn ferrites. Journal of Materials Science: Materials in Electronics, 2015, 26, 4325-4329.	2.2	3
26	Microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites with various borosilicate glasses. Journal of Materials Science: Materials in Electronics, 2016, 27, 517-521.	2.2	3
27	Low temperature sintering and dielectric properties of Ba3(VO4)2 microwave ceramics using Co2O3 additives. Journal of Materials Science: Materials in Electronics, 2017, 28, 18474-18479.	2.2	3
28	Effects of the Ba3(VO4)2 additions on microwave dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 2044-2048.	2.2	3
29	Preparation and microwave dielectric properties of BaMoO4–Ba3(VO4)2 ceramic composites. Journal of Materials Science: Materials in Electronics, 2019, 30, 9507-9512.	2.2	3
30	Effect of different forms of silica on sintering, microstructure and properties of borosilicate glass/Al2O3 composites. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 58-64.	1.0	1
31	Effect of MnCO3 on Eliminating Al2TiO5 Phase and Dielectric Properties of 0.90Al2O3–0.10TiO2 Composite Ceramics. Journal of Electronic Materials, 2017, 46, 4924-4930.	2.2	1