
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/371977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of Alternative mRNA Splicing in Vemurafenib-Resistant Melanoma Cells. Biomolecules, 2022, 12, 993.	4.0	2
2	Systems biology approaches to macromolecules: the role of dynamic protein assemblies in information processing. Current Opinion in Structural Biology, 2021, 67, 61-68.	5.7	2
3	The Ins and Outs of RAS Effector Complexes. Biomolecules, 2021, 11, 236.	4.0	27
4	Signaling Dynamics Regulating Crosstalks between T-Cell Activation and Immune Checkpoints. Trends in Cell Biology, 2021, 31, 224-235.	7.9	16
5	Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling. Genes, 2021, 12, 553.	2.4	13
6	A Chemo-Genomic Approach Identifies Diverse Epigenetic Therapeutic Vulnerabilities in MYCN-Amplified Neuroblastoma. Frontiers in Cell and Developmental Biology, 2021, 9, 612518.	3.7	4
7	Personalized Medicine for Neuroblastoma: Moving from Static Genotypes to Dynamic Simulations of Drug Response. Journal of Personalized Medicine, 2021, 11, 395.	2.5	5
8	A systematic analysis of signaling reactivation and drug resistance. Cell Reports, 2021, 35, 109157.	6.4	17
9	KBoost: a new method to infer gene regulatory networks from gene expression data. Scientific Reports, 2021, 11, 15461.	3.3	8
10	Emerging RAS-directed therapies for cancer. , 2021, 4, 543-558.		8
11	498â€Metastatic high grade serous ovarian cancer has an immune excluded tumor microenvironment – explaining failure of immunotherapy to date. , 2021, , .		0
12	Characterisation of HRas local signal transduction networks using engineered site-specific exchange factors. Small GTPases, 2020, 11, 371-383.	1.6	9
13	Loss of RAF kinase inhibitor protein is involved in myelomonocytic differentiation and aggravates RAS-driven myeloid leukemogenesis. Haematologica, 2020, 105, 375-386.	3.5	11
14	Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D. Nature Communications, 2020, 11, 499.	12.8	42
15	RASSF1A Tumour Suppressor: Target the Network for Effective Cancer Therapy. Cancers, 2020, 12, 229.	3.7	32
16	Accurate prediction of kinase-substrate networks using knowledge graphs. PLoS Computational Biology, 2020, 16, e1007578.	3.2	19
17	Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. International Journal of Molecular Sciences, 2020, 21, 1102.	4.1	408
18	Periodic propagating waves coordinate RhoGTPase network dynamics at the leading and trailing edges during cell migration. ELife. 2020. 9	6.0	40

#	Article	IF	CITATIONS
19	The future of genomics in Ireland $\hat{a} \in$ '' focus on genomics for health. HRB Open Research, 2020, 3, 89.	0.6	1
20	Accurate prediction of kinase-substrate networks using knowledge graphs. , 2020, 16, e1007578.		0
21	Accurate prediction of kinase-substrate networks using knowledge graphs. , 2020, 16, e1007578.		0
22	Accurate prediction of kinase-substrate networks using knowledge graphs. , 2020, 16, e1007578.		0
23	Accurate prediction of kinase-substrate networks using knowledge graphs. , 2020, 16, e1007578.		0
24	Accurate prediction of kinase-substrate networks using knowledge graphs. , 2020, 16, e1007578.		0
25	Accurate prediction of kinase-substrate networks using knowledge graphs. , 2020, 16, e1007578.		0
26	An Integrative Computational Approach for a Prioritization of Key Transcription Regulators Associated With Nanomaterial-Induced Toxicity. Toxicological Sciences, 2019, 171, 303-314.	3.1	10
27	All over the place: deciphering HRAS signaling from different subcellular compartments. Molecular and Cellular Oncology, 2019, 6, e1605821.	0.7	0
28	Transcriptional and metabolic rewiring of colorectal cancer cells expressing the oncogenic KRASG13D mutation. British Journal of Cancer, 2019, 121, 37-50.	6.4	41
29	Targeting promiscuous heterodimerization overcomes innate resistance to ERBB2 dimerization inhibitors in breast cancer. Breast Cancer Research, 2019, 21, 43.	5.0	33
30	An Integrated Global Analysis of Compartmentalized HRAS Signaling. Cell Reports, 2019, 26, 3100-3115.e7.	6.4	36
31	Metabolic stress regulates ERK activity by controlling KSRâ€RAF heterodimerization. EMBO Reports, 2018, 19, 320-336.	4.5	11
32	Systems biology: old news or new stimulus for biochemistry. Essays in Biochemistry, 2018, 62, 483-486.	4.7	0
33	From oncogenic mutation to dynamic code. Science, 2018, 361, 844-845.	12.6	6
34	Identification of a MYCN and Wnt-related VANGL2-ITLN1 fusion gene in neuroblastoma. Gene Reports, 2018, 12, 187-200.	0.8	1
35	Dissecting RAF Inhibitor Resistance by Structure-based Modeling Reveals Ways to Overcome Oncogenic RAS Signaling. Cell Systems, 2018, 7, 161-179.e14.	6.2	53
36	ALIX Regulates Tumor-Mediated Immunosuppression by Controlling EGFR Activity and PD-L1 Presentation. Cell Reports, 2018, 24, 630-641.	6.4	103

#	Article	IF	CITATIONS
37	A-RAF., 2018,, 391-399.		О
38	Vascular Endothelial Growth Factor (VEGF) Promotes Assembly of the p130Cas Interactome to Drive Endothelial Chemotactic Signaling and Angiogenesis. Molecular and Cellular Proteomics, 2017, 16, 168-180.	3.8	25
39	Retinoic acid and TGF-β signalling cooperate to overcome MYCN-induced retinoid resistance. Genome Medicine, 2017, 9, 15.	8.2	29
40	Spatial regulation of ARAF controls the MST2-Hippo pathway. Small GTPases, 2017, 10, 1-6.	1.6	7
41	A Brain-Derived Neurotrophic Factor Mimetic Is Sufficient to Restore Cone Photoreceptor Visual Function in an Inherited Blindness Model. Scientific Reports, 2017, 7, 11320.	3.3	35
42	Lapatinib potentiates cytotoxicity of ÂYM155 in neuroblastoma via inhibition of the ABCB1 efflux transporter. Scientific Reports, 2017, 7, 3091.	3.3	35
43	Viva Europa, a Land of Excellence in Research and Innovation for Health and Wellbeing. Progress in Preventive Medicine (New York, N Y), 2017, 2, e006.	0.7	6
44	Next Generation RNA Sequencing Analysis Reveals Expression of a Transient EMT Profile During Early Organization of MCF10A Cells in 3D. Methods in Molecular Biology, 2017, 1501, 233-243.	0.9	1
45	05.02â€Differentiating patient responses in rheumatoid arthritis – systems analysis of key molecular networks. , 2017, , .		0
46	Personalized Computational Models as Biomarkers. Journal of Personalized Medicine, 2017, 7, 9.	2.5	15
47	ldentification of potential new treatment response markers and therapeutic targets using a Gaussian process-based method in lapatinib insensitive breast cancer models. PLoS ONE, 2017, 12, e0177058.	2.5	2
48	Proteomics analysis of bladder cancer invasion: Targeting EIF3D for therapeutic intervention. Oncotarget, 2017, 8, 69435-69455.	1.8	27
49	A novel RNA sequencing data analysis method for cell line authentication. PLoS ONE, 2017, 12, e0171435.	2.5	25
50	SARAH Domain-Mediated MST2-RASSF Dimeric Interactions. PLoS Computational Biology, 2016, 12, e1005051.	3.2	15
51	Stabilization of C-RAF:KSR1 complex by DiRas3 reduces availability of C-RAF for dimerization with B-RAF. Cellular Signalling, 2016, 28, 1451-1462.	3.6	6
52	BGRMI: A method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research. Scientific Reports, 2016, 6, 37140.	3.3	31
53	Comparison of different statistical approaches for urinary peptide biomarker detection in the context of coronary artery disease. BMC Bioinformatics, 2016, 17, 496.	2.6	6
54	Phosphorylation of RAF Kinase Dimers Drives Conformational Changes that Facilitate Transactivation. Angewandte Chemie, 2016, 128, 995-998.	2.0	0

#	Article	IF	CITATIONS
55	MAPK kinase signalling dynamics regulate cell fate decisions and drug resistance. Current Opinion in Structural Biology, 2016, 41, 151-158.	5.7	72
56	Integrating network reconstruction with mechanistic modeling to predict cancer therapies. Science Signaling, 2016, 9, ra114.	3.6	63
57	Mesenchymal Stromal Cells Protect Endothelial Cells from Cytotoxic T Lymphocyteâ€Induced Lysis. Scandinavian Journal of Immunology, 2016, 84, 158-164.	2.7	7
58	Autophosphorylation on S614 inhibits the activity and the transforming potential of BRAF. Cellular Signalling, 2016, 28, 1432-1439.	3.6	6
59	The spatiotemporal regulation of RAS signalling. Biochemical Society Transactions, 2016, 44, 1517-1522.	3.4	20
60	Bistability in the Rac1, PAK, and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches. Cell Systems, 2016, 2, 38-48.	6.2	159
61	Phosphorylation of RAF Kinase Dimers Drives Conformational Changes that Facilitate Transactivation. Angewandte Chemie - International Edition, 2016, 55, 983-986.	13.8	43
62	Differential localization of A-Raf regulates MST2-mediated apoptosis during epithelial differentiation. Cell Death and Differentiation, 2016, 23, 1283-1295.	11.2	17
63	A microfluidic dual gradient generator for conducting cell-based drug combination assays. Integrative Biology (United Kingdom), 2016, 8, 39-49.	1.3	25
64	MST2-RASSF protein–protein interactions through SARAH domains. Briefings in Bioinformatics, 2016, 17, 593-602.	6.5	13
65	Wnt signalling is a bi-directional vulnerability of cancer cells. Oncotarget, 2016, 7, 60310-60331.	1.8	31
66	A-RAF. , 2016, , 1-10.		0
67	ROCK activity and the $G\hat{l}^{2}\hat{l}^{3}$ complex mediate chemotactic migration of mouse bone marrow-derived stromal cells. Stem Cell Research and Therapy, 2015, 6, 136.	5.5	10
68	Integrative omics reveals MYCN as a global suppressor of cellular signalling and enables network-based therapeutic target discovery in neuroblastoma. Oncotarget, 2015, 6, 43182-43201.	1.8	36
69	Mitogen-Inducible Gene-6 Mediates Feedback Inhibition from Mutated BRAF towards the Epidermal Growth Factor Receptor and Thereby Limits Malignant Transformation. PLoS ONE, 2015, 10, e0129859.	2.5	8
70	Network-based identification of feedback modules that control RhoA activity and cell migration. Journal of Molecular Cell Biology, 2015, 7, 242-252.	3.3	20
71	Signaling pathway models as biomarkers: Patient-specific simulations of JNK activity predict the survival of neuroblastoma patients. Science Signaling, 2015, 8, ra130.	3.6	140
72	Signalling mechanisms regulating phenotypic changes in breast cancer cells. Bioscience Reports, 2015, 35, .	2.4	9

#	Article	IF	CITATIONS
73	Silence on the relevant literature and errors in implementation. Nature Biotechnology, 2015, 33, 336-339.	17.5	14
74	Measuring Transcription Rate Changes via Time-Course 4-Thiouridine Pulse-Labelling Improves Transcriptional Target Identification. Journal of Molecular Biology, 2015, 427, 3368-3374.	4.2	13
75	The dynamic control of signal transduction networks in cancer cells. Nature Reviews Cancer, 2015, 15, 515-527.	28.4	282
76	Protein–protein interactions generate hidden feedback and feed-forward loops to trigger bistable switches, oscillations and biphasic dose–responses. Molecular BioSystems, 2015, 11, 2750-2762.	2.9	30
77	Competing to coordinate cell fate decisions: the MST2-Raf-1 signaling device. Cell Cycle, 2015, 14, 189-199.	2.6	23
78	Mechanochemical Stimulation of MCF7 Cells with Rodâ€Shaped Fe–Au Janus Particles Induces Cell Death Through Paradoxical Hyperactivation of ERK. Advanced Healthcare Materials, 2015, 4, 395-404.	7.6	26
79	Advances in dynamic modeling of colorectal cancer signaling-network regions, a path toward targeted therapies. Oncotarget, 2015, 6, 5041-5058.	1.8	24
80	Evaluating Strategies to Normalise Biological Replicates of Western Blot Data. PLoS ONE, 2014, 9, e87293.	2.5	174
81	On-Beads Digestion in Conjunction with Data-Dependent Mass Spectrometry: A Shortcut to Quantitative and Dynamic Interaction Proteomics. Biology, 2014, 3, 320-332.	2.8	126
82	Navigating the Multilayered Organization of Eukaryotic Signaling: A New Trend in Data Integration. PLoS Computational Biology, 2014, 10, e1003385.	3.2	9
83	Robustness and Evolvability of the Human Signaling Network. PLoS Computational Biology, 2014, 10, e1003763.	3.2	23
84	One Hippo and many masters: differential regulation of the Hippo pathway in cancer. Biochemical Society Transactions, 2014, 42, 816-821.	3.4	12
85	Molecular mechanisms of asymmetric RAF dimer activation. Biochemical Society Transactions, 2014, 42, 784-790.	3.4	28
86	Quantification of Functionalised Gold Nanoparticle-Targeted Knockdown of Gene Expression in HeLa Cells. PLoS ONE, 2014, 9, e99458.	2.5	8
87	The APC Network Regulates the Removal of Mutated Cells from Colonic Crypts. Cell Reports, 2014, 7, 94-103.	6.4	19
88	Mig-6 participates in the regulation of cell senescence and retinoblastoma protein phosphorylation. Cellular Signalling, 2014, 26, 1870-1877.	3.6	7
89	Systems biology-embedded target validation: improving efficacy in drug discovery. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2014, 6, 1-11.	6.6	19
90	In vitro study of the interaction of heregulin-functionalized magnetic–optical nanorods with MCF7 and MDA-MB-231 cells. Faraday Discussions, 2014, 175, 189-201.	3.2	1

#	Article	IF	CITATIONS
91	Protein interaction switches coordinate Raf-1 and MST2/Hippo signalling. Nature Cell Biology, 2014, 16, 673-684.	10.3	138
92	HGF Induces Epithelial-to-Mesenchymal Transition by Modulating the Mammalian Hippo/MST2 and ISG15 Pathways. Journal of Proteome Research, 2014, 13, 2874-2886.	3.7	82
93	GSK3 Inhibitors Regulate <i>MYCN</i> mRNA Levels and Reduce Neuroblastoma Cell Viability through Multiple Mechanisms, Including p53 and Wnt Signaling. Molecular Cancer Therapeutics, 2014, 13, 454-467.	4.1	73
94	Nonlinear signalling networks and cell-to-cell variability transform external signals into broadly distributed or bimodal responses. Journal of the Royal Society Interface, 2014, 11, 20140383.	3.4	24
95	Basic fibroblast growth factor modifies the hypoxic response of human bone marrow stromal cells by ERK-mediated enhancement of HIF-11± activity. Stem Cell Research, 2014, 12, 646-658.	0.7	19
96	Splicing factor hnRNP A2 activates the Ras-MAPK-ERK pathway by controlling A-Raf splicing in hepatocellular carcinoma development. Rna, 2014, 20, 505-515.	3.5	95
97	Regulation of the MAPK Pathway by Raf Kinase Inhibitory Protein. Critical Reviews in Oncogenesis, 2014, 19, 405-415.	0.4	24
98	Integrating Bayesian variable selection with Modular Response Analysis to infer biochemical network topology. BMC Systems Biology, 2013, 7, 57.	3.0	34
99	Control of the G-protein cascade dynamics by GDP dissociation inhibitors. Molecular BioSystems, 2013, 9, 2454.	2.9	16
100	Extracellular Signal-Regulated Kinase Regulates RhoA Activation and Tumor Cell Plasticity by Inhibiting Guanine Exchange Factor H1 Activity. Molecular and Cellular Biology, 2013, 33, 4526-4537.	2.3	30
101	When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK signalling. Cell Communication and Signaling, 2013, 11, 52.	6.5	154
102	It takes two to tango – signalling by dimeric Raf kinases. Molecular BioSystems, 2013, 9, 551-558.	2.9	39
103	Raf kinase inhibitor protein expression combined with peritoneal involvement and lymphovascular invasion predicts prognosis in <scp>D</scp> ukes' <scp>B</scp> colorectal cancer patients. Histopathology, 2013, 62, 505-510.	2.9	16
104	Big Signals from Small Particles: Regulation of Cell Signaling Pathways by Nanoparticles. Chemical Reviews, 2013, 113, 3391-3406.	47.7	146
105	Imatinib-dependent tyrosine phosphorylation profiling of Bcr-Abl-positive chronic myeloid leukemia cells. Leukemia, 2013, 27, 743-746.	7.2	23
106	Systems medicine: helping us understand the complexity of disease. QJM - Monthly Journal of the Association of Physicians, 2013, 106, 891-895.	0.5	30
107	Systems medicine: opportunities and challenges for systems biology approaches. FEBS Journal, 2013, 280, 5937-5937.	4.7	4
108	Pseudophosphatase STYX modulates cell-fate decisions and cell migration by spatiotemporal regulation of ERK1/2. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2934-43.	7.1	49

#	Article	IF	CITATIONS
109	Phosphodiesterase-8A binds to and regulates Raf-1 kinase. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1533-42.	7.1	49
110	The Differential Effects of Wild-Type and Mutated K-Ras on MST2 Signaling Are Determined by K-Ras Activation Kinetics. Molecular and Cellular Biology, 2013, 33, 1859-1868.	2.3	31
111	Crosstalk and Signaling Switches in Mitogen-Activated Protein Kinase Cascades. Frontiers in Physiology, 2012, 3, 355.	2.8	137
112	ERK2 drives tumour cell migration in 3D microenvironments by suppressing expression of Rab17 and Liprin-β2. Journal of Cell Science, 2012, 125, 1465-77.	2.0	56
113	Eukaryotic Translation Initiation Factor 3, Subunit a, Regulates the Extracellular Signal-Regulated Kinase Pathway. Molecular and Cellular Biology, 2012, 32, 88-95.	2.3	33
114	Mammalian protein expression noise: scaling principles and the implications for knockdown experiments. Molecular BioSystems, 2012, 8, 3068.	2.9	15
115	A 19S proteasomal subunit cooperates with an ERK MAPK-regulated degron to regulate accumulation of Fra-1 in tumour cells. Oncogene, 2012, 31, 1817-1824.	5.9	27
116	Cell Type-Specific Activation of AKT and ERK Signaling Pathways by Small Negatively-Charged Magnetic Nanoparticles. Scientific Reports, 2012, 2, 868.	3.3	48
117	Computational Approaches for Analyzing Information Flow in Biological Networks. Science Signaling, 2012, 5, re1.	3.6	152
118	Emergence of bimodal cell population responses from the interplay between analog single-cell signaling and protein expression noise. BMC Systems Biology, 2012, 6, 109.	3.0	89
119	Frequent loss of RAF kinase inhibitor protein expression in acute myeloid leukemia. Leukemia, 2012, 26, 1842-1849.	7.2	38
120	Alpha-2-Macroglobulin Receptor (A2MR). , 2012, , 100-100.		0
121	An Integrated Bayesian Framework for Identifying Phosphorylation Networks in Stimulated Cells. Advances in Experimental Medicine and Biology, 2012, 736, 59-80.	1.6	7
122	The topology design principles that determine the spatiotemporal dynamics of G-protein cascades. Molecular BioSystems, 2012, 8, 730.	2.9	33
123	Unique Reporter-Based Sensor Platforms to Monitor Signalling in Cells. PLoS ONE, 2012, 7, e50521.	2.5	4
124	Understanding Cell Fate Decisions by Identifying Crucial System Dynamics. SIMAI Springer Series, 2012, , 83-104.	0.4	0
125	RAF kinase inhibitory protein (RKIP) modulates cell cycle kinetics and motility. Molecular BioSystems, 2011, 7, 928-941.	2.9	58
126	Mutant K-Ras Activation of the Proapoptotic MST2 Pathway Is Antagonized by Wild-Type K-Ras. Molecular Cell, 2011, 44, 893-906.	9.7	127

#	Article	IF	CITATIONS
127	Linear Approaches to Intramolecular Förster Resonance Energy Transfer Probe Measurements for Quantitative Modeling. PLoS ONE, 2011, 6, e27823.	2.5	18
128	Prolactin-stimulated activation of ERK1/2 mitogen-activated protein kinases is controlled by PI3-kinase/Rac/PAK signaling pathway in breast cancer cells. Cellular Signalling, 2011, 23, 1794-1805.	3.6	89
129	The secret life of kinases: functions beyond catalysis. Cell Communication and Signaling, 2011, 9, 23.	6.5	154
130	Raf Kinase Inhibitor Protein RKIP Enhances Signaling by Glycogen Synthase Kinase-3β. Cancer Research, 2011, 71, 1334-1343.	0.9	124
131	c-Myc Regulates RNA Splicing of the A-Raf Kinase and Its Activation of the ERK Pathway. Cancer Research, 2011, 71, 4664-4674.	0.9	61
132	Biology using engineering tools. Cell Cycle, 2011, 10, 2069-2076.	2.6	18
133	Raf Family Kinases: Old Dogs Have Learned New Tricks. Genes and Cancer, 2011, 2, 232-260.	1.9	322
134	Switches, Excitable Responses and Oscillations in the Ring1B/Bmi1 Ubiquitination System. PLoS Computational Biology, 2011, 7, e1002317.	3.2	33
135	Effects of RKIP Loss in Human and in Animal Models of Colorectal Cancer. Forum on Immunopathological Diseases and Therapeutics, 2011, 2, 111-118.	0.1	0
136	Identification of potential HLA class I and class II epitope precursors associated with heat shock protein 70 (HSPA). Cell Stress and Chaperones, 2010, 15, 729-741.	2.9	16
137	Addressing the Challenge of Defining Valid Proteomic Biomarkers and Classifiers. BMC Bioinformatics, 2010, 11, 594.	2.6	108
138	The Bcr–Abl kinase regulates the actin cytoskeleton via a GADS/Slp-76/Nck1 adaptor protein pathway. Cellular Signalling, 2010, 22, 848-856.	3.6	13
139	Comprehensive human urine standards for comparability and standardization in clinical proteome analysis. Proteomics - Clinical Applications, 2010, 4, 464-478.	1.6	139
140	The RASSF8 candidate tumor suppressor inhibits cell growth and regulates the Wnt and NF-κB signaling pathways. Oncogene, 2010, 29, 4307-4316.	5.9	83
141	Functional proteomics to dissect tyrosine kinase signalling pathways in cancer. Nature Reviews Cancer, 2010, 10, 618-629.	28.4	185
142	Signalling ballet in space and time. Nature Reviews Molecular Cell Biology, 2010, 11, 414-426.	37.0	563
143	Proapoptotic Kinase MST2 Coordinates Signaling Crosstalk between RASSF1A, Raf-1, and Akt. Cancer Research, 2010, 70, 1195-1203.	0.9	99
144	The Renilla luciferase gene as a reference gene for normalization of gene expression in transiently transfected cells. BMC Molecular Biology, 2010, 11, 103.	3.0	15

#	Article	IF	CITATIONS
145	The Mammalian MAPK/ERK Pathway Exhibits Properties of a Negative Feedback Amplifier. Science Signaling, 2010, 3, ra90.	3.6	216
146	Functional Roles of Multiple Feedback Loops in Extracellular Signal-Regulated Kinase and Wnt Signaling Pathways That Regulate Epithelial-Mesenchymal Transition. Cancer Research, 2010, 70, 6715-6724.	0.9	138
147	Heterogeneous Nuclear Ribonucleoprotein H Blocks MST2-Mediated Apoptosis in Cancer Cells by Regulating <i>a-raf</i> Transcription. Cancer Research, 2010, 70, 1679-1688.	0.9	82
148	Inferring Signaling Pathway Topologies from Multiple Perturbation Measurements of Specific Biochemical Species. Science Signaling, 2010, 3, ra20.	3.6	101
149	PI3K/Akt-sensitive MEK-independent compensatory circuit of ERK activation in ER-positive PI3K-mutant T47D breast cancer cells. Cellular Signalling, 2010, 22, 1369-1378.	3.6	84
150	Naturally Occurring Human Urinary Peptides for Use in Diagnosis of Chronic Kidney Disease. Molecular and Cellular Proteomics, 2010, 9, 2424-2437.	3.8	434
151	Recommendations for Biomarker Identification and Qualification in Clinical Proteomics. Science Translational Medicine, 2010, 2, 46ps42.	12.4	273
152	On-chip immunoprecipitation for protein purification. Lab on A Chip, 2010, 10, 2805.	6.0	23
153	Investigating dynamics of inhibitory and feedback loops in ERK signalling using power-law models. Molecular BioSystems, 2010, 6, 2174.	2.9	24
154	Loss of RAF Kinase Inhibitor Protein Is a Frequent Event In Acute Myeloid Leukemia with a Monocytic Phenotype and Cooperates with Mutant RAS In Malignant Transformation. Blood, 2010, 116, 4185-4185.	1.4	5
155	Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species. Science Signaling, 2010, 3, ra20.	3.6	35
156	Pachinko biology: Gambling on single cells. , 2009, , .		0
157	Theoretical and experimental analysis links isoform―specific ERK signalling to cell fate decisions. Molecular Systems Biology, 2009, 5, 334.	7.2	72
158	MST Kinases Monitor Actin Cytoskeletal Integrity and Signal via c-Jun N-Terminal Kinase Stress-Activated Kinase To Regulate p21 ^{Waf1/Cip1} Stability. Molecular and Cellular Biology, 2009, 29, 6380-6390.	2.3	74
159	When RASSF1A RAN into tumor suppression: Ran GTPase is a RASSF1A effector involved in controlling microtubule organization. Cell Cycle, 2009, 8, 3796-3797.	2.6	4
160	Multiple roles of the NF�B signaling pathway regulated by coupled negative feedback circuits. FASEB Journal, 2009, 23, 2796-2802.	0.5	20
161	Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway. Journal of Cell Science, 2009, 122, 425-435.	2.0	162
162	Computational modelling of cancerous mutations in the EGFR/ERK signalling pathway. BMC Systems Biology, 2009, 3, 100.	3.0	54

#	Article	IF	CITATIONS
163	RAN GTPase Is a RASSF1A Effector Involved in Controlling Microtubule Organization. Current Biology, 2009, 19, 1227-1232.	3.9	42
164	The C-terminus of Raf-1 acts as a 14-3-3-dependent activation switch. Cellular Signalling, 2009, 21, 1645-1651.	3.6	44
165	Role of inhibitory proteins as modulators of oscillations in NFκB signalling. IET Systems Biology, 2009, 3, 59-76.	1.5	14
166	Regulation of human myoblast differentiation by PEBP4. EMBO Reports, 2009, 10, 278-284.	4.5	37
167	Cell fate decisions are specified by the dynamic ERK interactome. Nature Cell Biology, 2009, 11, 1458-1464.	10.3	264
168	RASSF2 associates with and stabilizes the proapoptotic kinase MST2. Oncogene, 2009, 28, 2988-2998.	5.9	77
169	Exploration of homodimer receptor: homodimer protein interactions. International Journal of Bioinformatics Research and Applications, 2009, 5, 447.	0.2	2
170	Chip-Based Dynamic Real-Time Quantification of Drug-Induced Cytotoxicity in Human Tumor Cells. Analytical Chemistry, 2009, 81, 6952-6959.	6.5	51
171	Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells. Lab on A Chip, 2009, 9, 2659.	6.0	134
172	Technical, bioinformatical and statistical aspects of liquid chromatography–mass spectrometry (LC–MS) and capillary electrophoresis-mass spectrometry (CE-MS) based clinical proteomics: A critical assessmentâ~†. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 1250-1258.	2.3	80
173	Proteomics and phosphoproteomics for the mapping of cellular signalling networks. Proteomics, 2008, 8, 4402-4415.	2.2	35
174	CEâ€MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics. Proteomics - Clinical Applications, 2008, 2, 964-973.	1.6	178
175	Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene, 2008, 27, 2243-2248.	5.9	179
176	Mutationally activated K-ras 4A and 4B both mediate lung carcinogenesis. Experimental Cell Research, 2008, 314, 1105-1114.	2.6	29
177	Dynamics of receptor and protein transducer homodimerisation. BMC Systems Biology, 2008, 2, 92.	3.0	9
178	The RKIP (Raf-1 Kinase Inhibitor Protein) conserved pocket binds to the phosphorylated N-region of Raf-1 and inhibits the Raf-1-mediated activated phosphorylation of MEK. Cellular Signalling, 2008, 20, 935-941.	3.6	49
179	Lab-on-a-chip technologies for proteomic analysis from isolated cells. Journal of the Royal Society Interface, 2008, 5, S123-30.	3.4	54
180	Giving Space to Cell Signaling. Cell, 2008, 133, 566-567.	28.9	23

#	Article	IF	CITATIONS
181	Defining systems biology: through the eyes of a biochemist. IET Systems Biology, 2008, 2, 5-7.	1.5	9
182	Computational modelling reveals feedback redundancy within the epidermal growth factor receptor/extracellular-signal regulated kinase signalling pathway. IET Systems Biology, 2008, 2, 173-183.	1.5	16
183	A Hippo in the ointment: MST signalling beyond the fly. Cell Cycle, 2008, 7, 879-884.	2.6	35
184	Mutations of β-arrestin 2 that limit self-association also interfere with interactions with the β2-adrenoceptor and the ERK1/2 MAPKs: implications for β2-adrenoceptor signalling via the ERK1/2 MAPKs. Biochemical Journal, 2008, 413, 51-60.	3.7	40
185	Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinformatics, 2008, 24, 2894-2900.	4.1	117
186	Urinary Proteomic Biomarkers in Coronary Artery Disease. Molecular and Cellular Proteomics, 2008, 7, 290-298.	3.8	197
187	Raf kinase inhibitor protein: mechanism of loss of expression and association with genomic instability. Journal of Clinical Pathology, 2008, 61, 524-529.	2.0	68
188	Mapping of Signaling Pathways by Functional Interaction Proteomics. Methods in Molecular Biology, 2008, 484, 177-192.	0.9	23
189	Phosphatase and Feedback Regulation of Raf-1 Signaling. Cell Cycle, 2007, 6, 3-7.	2.6	60
190	RASSF1A Elicits Apoptosis through an MST2 Pathway Directing Proapoptotic Transcription by the p73 Tumor Suppressor Protein. Molecular Cell, 2007, 27, 962-975.	9.7	369
191	Microarray-Formatted Clinical Biomarker Assay Development Using Peptide Aptamers to Anterior Gradient-2. Biochemistry, 2007, 46, 13742-13751.	2.5	33
192	A database of naturally occurring human urinary peptides and proteins for use in clinical applications. Nature Precedings, 2007, , .	0.1	0
193	Clinical proteomics: A need to define the field and to begin to set adequate standards. Proteomics - Clinical Applications, 2007, 1, 148-156.	1.6	274
194	A hidden oncogenic positive feedback loop caused by crosstalk between Wnt and ERK Pathways. Oncogene, 2007, 26, 4571-4579.	5.9	141
195	MAP kinase signalling pathways in cancer. Oncogene, 2007, 26, 3279-3290.	5.9	2,473
196	Raf-1 and B-Raf promote protein kinase C Î, interaction with BAD. Cellular Signalling, 2007, 19, 547-555.	3.6	15
197	High-precision FLIM–FRET in fixed and living cells reveals heterogeneity in a simple CFP–YFP fusion protein. Biophysical Chemistry, 2007, 127, 155-164.	2.8	55
198	Regulation of RKIP binding to the N-region of the Raf-1 kinase. FEBS Letters, 2006, 580, 6405-6412.	2.8	43

#	Article	IF	CITATIONS
199	Regulation of the Raf–MEK–ERK pathway by protein phosphatase 5. Nature Cell Biology, 2006, 8, 1011-1016.	10.3	137
200	Proteomic analysis of phosphorylation, oxidation and nitrosylation in signal transduction. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1823-1841.	2.3	78
201	Raf Kinase Inhibitor Protein Expression in a Survival Analysis of Colorectal Cancer Patients. Journal of Clinical Oncology, 2006, 24, 5672-5679.	1.6	166
202	Regulation and Role of Raf-1/B-Raf Heterodimerization. Molecular and Cellular Biology, 2006, 26, 2262-2272.	2.3	363
203	The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Human Molecular Genetics, 2006, 15, 223-232.	2.9	442
204	Transcriptional Repression of Telomerase RNA Gene Expression by c-Jun-NH2-Kinase and Sp1/Sp3. Cancer Research, 2006, 66, 1363-1370.	0.9	36
205	Raf Kinase Inhibitor Protein Regulation of Raf and MAPK Signaling. Methods in Enzymology, 2006, 407, 248-259.	1.0	40
206	The molecular make-up of a tumour: proteomics in cancer research. Clinical Science, 2005, 108, 369-383.	4.3	97
207	Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nature Reviews Molecular Cell Biology, 2005, 6, 827-837.	37.0	941
208	Discovery of biomarkers in human urine and cerebrospinal fluid by capillary electrophoresis coupled to mass spectrometry: Towards new diagnostic and therapeutic approaches. Electrophoresis, 2005, 26, 1476-1487.	2.4	120
209	Capillary electrophoresis–mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrometry Reviews, 2005, 24, 959-977.	5.4	275
210	Oncogenic K-RAS Is Required to Maintain Changes in Cytoskeletal Organization, Adhesion, and Motility in Colon Cancer Cells. Cancer Research, 2005, 65, 1244-1250.	0.9	120
211	Reduction of Raf-1 Kinase Inhibitor Protein Expression Correlates with Breast Cancer Metastasis. Clinical Cancer Research, 2005, 11, 7392-7397.	7.0	228
212	Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochemical Journal, 2005, 392, 249-261.	3.7	289
213	Taming the Hippo: Raf-1 Controls Apoptosis by Suppressing MST2/Hippo. Cell Cycle, 2005, 4, 365-367.	2.6	59
214	Mammalian Sterile 20–Like Kinases in Tumor Suppression: An Emerging Pathway. Cancer Research, 2005, 65, 5485-5487.	0.9	53
215	When kinases meet mathematics: the systems biology of MAPK signalling. FEBS Letters, 2005, 579, 1891-1895.	2.8	151

News. IET Systems Biology, 2005, 152, 53.

2.0 1

#	Article	IF	CITATIONS
217	Targeting MAPK Signalling: Prometheus Fire or Pandoras Box?. Current Pharmaceutical Design, 2004, 10, 1885-1905.	1.9	54
218	Reduction in Raf Kinase Inhibitor Protein Expression Is Associated with Increased Ras-Extracellular Signal-Regulated Kinase Signaling in Melanoma Cell Lines. Cancer Research, 2004, 64, 5186-5192.	0.9	181
219	LPS resistance in monocytic cells caused by reverse signaling through transmembrane TNF (mTNF) is mediated by the MAPK/ERK pathway. Journal of Leukocyte Biology, 2004, 75, 324-331.	3.3	51
220	Conferring specificity on the ubiquitous Raf/MEK signalling pathway. British Journal of Cancer, 2004, 90, 283-288.	6.4	148
221	Activation of protein kinase A (PKA) by 8-Cl-cAMP as a novel approach for antileukaemic therapy. British Journal of Cancer, 2004, 91, 186-192.	6.4	18
222	Oncogenic B-Raf mutations. Cancer Cell, 2004, 5, 303-304.	16.8	55
223	Mass spectrometry for the detection of differentially expressed proteins: a comparison of surface-enhanced laser desorption/ionization and capillary electrophoresis/mass spectrometry. Rapid Communications in Mass Spectrometry, 2004, 18, 149-156.	1.5	186
224	Clinical proteomics: a question of technology. Rapid Communications in Mass Spectrometry, 2004, 18, 2365-2366.	1.5	28
225	Identification and analysis of phosphopeptides. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 803, 111-120.	2.3	65
226	Modeling and Simulation of Intracellular Dynamics: Choosing an Appropriate Framework. IEEE Transactions on Nanobioscience, 2004, 3, 200-207.	3.3	99
227	Role of the Kinase MST2 in Suppression of Apoptosis by the Proto-Oncogene Product Raf-1. Science, 2004, 306, 2267-2270.	12.6	292
228	Ligands working as receptors: reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system. Cytokine and Growth Factor Reviews, 2004, 15, 353-366.	7.2	246
229	Engineering the serine/threonine protein kinase Raf-1 to utilise an orthogonal analogue of ATP substituted at the N 6 position. FEBS Letters, 2004, 556, 26-34.	2.8	23
230	The kinase domain of MEKK1 induces apoptosis by dysregulation of MAP kinase pathways. Experimental Cell Research, 2003, 283, 80-90.	2.6	19
231	A Raf-1 Mutant That Dissociates MEK/Extracellular Signal-Regulated Kinase Activation from Malignant Transformation and Differentiation but Not Proliferation. Molecular and Cellular Biology, 2003, 23, 1983-1993.	2.3	51
232	Induction of Apoptosis by Protein Kinase Cδ Is Independent of Its Kinase Activity. Journal of Biological Chemistry, 2002, 277, 32054-32062.	3.4	45
233	The role of MAPK pathways in the action of chemotherapeutic drugs. Carcinogenesis, 2002, 23, 1831-1838.	2.8	152
234	The role of Raf kinases in malignant transformation. Expert Reviews in Molecular Medicine, 2002, 4, 1-18.	3.9	62

#	Article	IF	CITATIONS
235	Cyclic AMP-Dependent Kinase Regulates Raf-1 Kinase Mainly by Phosphorylation of Serine 259. Molecular and Cellular Biology, 2002, 22, 3237-3246.	2.3	202
236	Ras/Raf signalling and emerging pharmacotherapeutic targets. Expert Opinion on Pharmacotherapy, 2002, 3, 709-718.	1.8	50
237	Untying the regulation of the Raf-1 kinase. Archives of Biochemistry and Biophysics, 2002, 404, 3-9.	3.0	166
238	Comparison of anthracycline-induced death of human leukemia cells: programmed cell death versus necrosis. Apoptosis: an International Journal on Programmed Cell Death, 2002, 7, 537-548.	4.9	56
239	Regulation of Raf-1 activation and signalling by dephosphorylation. EMBO Journal, 2002, 21, 64-71.	7.8	239
240	Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK)-independent functions of Raf kinases. Journal of Cell Science, 2002, 115, 1575-1581.	2.0	127
241	Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK)-independent functions of Raf kinases. Journal of Cell Science, 2002, 115, 1575-81.	2.0	111
242	To be or not to be: a question of B-Raf?. Trends in Neurosciences, 2001, 24, 498-500.	8.6	15
243	Raf Kinase Inhibitor Protein Interacts with NF-κB-Inducing Kinase and TAK1 and Inhibits NF-κB Activation. Molecular and Cellular Biology, 2001, 21, 7207-7217.	2.3	368
244	Identification of the Mechanisms Regulating the Differential Activation of the MAPK Cascade by Epidermal Growth Factor and Nerve Growth Factor in PC12 Cells. Journal of Biological Chemistry, 2001, 276, 18169-18177.	3.4	331
245	Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochemical Journal, 2000, 351, 289.	3.7	347
246	Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochemical Journal, 2000, 351, 289-305.	3.7	1,212
247	Identification of the smooth muscle-specific protein, sm22, as a novel protein kinase C substrate using two-dimensional gel electrophoresis and mass spectrometry. Electrophoresis, 2000, 21, 2443-2453.	2.4	14
248	The PKC targeting protein RACK1 interacts with the Epstein-Barr virus activator protein BZLF1. FEBS Journal, 2000, 267, 3891-3901.	0.2	47
249	Mechanism of Suppression of the Raf/MEK/Extracellular Signal-Regulated Kinase Pathway by the Raf Kinase Inhibitor Protein. Molecular and Cellular Biology, 2000, 20, 3079-3085.	2.3	357
250	Reverse Signaling Through Transmembrane TNF Confers Resistance to Lipopolysaccharide in Human Monocytes and Macrophages. Journal of Immunology, 2000, 164, 6193-6198.	0.8	171
251	The Rafâ€1 kinase associates with vimentin kinases and regulates the structure of vimentin filaments. FASEB Journal, 2000, 14, 2008-2021.	0.5	55
252	Cell-Type Specific Integration of Cross-Talk between Extracellular Signal-Regulated Kinase and cAMP Signaling. Molecular Pharmacology, 2000, 58, 659-668.	2.3	187

#	Article	IF	CITATIONS
253	Raf-1-associated Protein Phosphatase 2A as a Positive Regulator of Kinase Activation. Journal of Biological Chemistry, 2000, 275, 22300-22304.	3.4	200
254	Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochemical Journal, 2000, 351 Pt 2, 289-305.	3.7	382
255	Cell-type specific integration of cross-talk between extracellular signal-regulated kinase and cAMP signaling. Molecular Pharmacology, 2000, 58, 659-68.	2.3	53
256	Endothelin-Stimulated ERK Activation in Airway Smooth-Muscle Cells Requires Calcium Influx and Raf Activation. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 99-105.	2.9	22
257	Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature, 1999, 401, 173-177.	27.8	808
258	Regulation of Raf-1 kinase by TNF via its second messenger ceramide and cross-talk with mitogenic signalling. EMBO Journal, 1998, 17, 732-742.	7.8	99
259	Prolonged vs transient roles for early cell cycle signaling components. Oncogene, 1998, 17, 889-899.	5.9	11
260	Studies of perinuclear and nuclear translocation of the Raf-1 protein in rodent fibroblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1402, 6-16.	4.1	1
261	Activation of bcl-2 suppressible 40 and 44 kDa p38-like kinases during apoptosis of early and late B lymphocytic cell lines. FEBS Letters, 1998, 427, 29-35.	2.8	3
262	Activated Raf Induces the Hyperphosphorylation of Stathmin and the Reorganization of the Microtubule Network. Journal of Biological Chemistry, 1998, 273, 22848-22855.	3.4	43
263	Activation of the Epstein-Barr Virus Transcription Factor BZLF1 by 12- <i>O</i> -Tetradecanoylphorbol-13-Acetate-Induced Phosphorylation. Journal of Virology, 1998, 72, 8105-8114.	3.4	59
264	Activated raf induces the hyperphosphorylation of stathmin and the reorganization of the microtubule network. Journal of Biological Chemistry, 1998, 273, 22848-55.	3.4	40
265	Inhibition of the Raf-1 Kinase by Cyclic AMP Agonists Causes Apoptosis of v-abl-Transformed Cells. Molecular and Cellular Biology, 1997, 17, 3229-3241.	2.3	70
266	Protein kinase C-ε associates with the Raf-1 kinase and induces the production of growth factors that stimulate Raf-1 activity. Oncogene, 1997, 15, 2921-2927.	5.9	78
267	Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. EMBO Journal, 1997, 16, 6478-6485.	7.8	291
268	Protein kinase C-zeta reverts v-raf transformation of NIH-3T3 cells Genes and Development, 1996, 10, 1455-1466.	5.9	36
269	Characterization of ll̂® Kinases. Journal of Biological Chemistry, 1996, 271, 13868-13874.	3.4	62
270	Negative Regulation of Raf-1 by Phosphorylation of Serine 621. Molecular and Cellular Biology, 1996, 16, 5409-5418.	2.3	210

#	Article	IF	CITATIONS
271	Nerve Growth Factor-mediated Activation of the Mitogen-activated Protein (MAP) Kinase Cascade Involves a Signaling Complex Containing B-Raf and HSP90. Journal of Biological Chemistry, 1996, 271, 23626-23629.	3.4	80
272	INFLUENCE OF BACTERIAL ENDOTOXIN ON RADIATION-INDUCED ACTIVATION OF HUMAN ENDOTHELIAL CELLS IN VITRO AND IN VIVO. Transplantation, 1996, 62, 819-827.	1.0	39
273	Inhibition of Raf-1 signaling by a monoclonal antibody, which interferes with Raf-1 activation and with Mek substrate binding. Oncogene, 1996, 13, 1305-14.	5.9	15
274	PKC epsilon functions as an oncogene by enhancing activation of the Raf kinase. Oncogene, 1996, 13, 2517-26.	5.9	123
275	Regulation of the expression of the VECF/VPS and its receptors: role in tumor angiogenesis. Breast Cancer Research and Treatment, 1995, 36, 139-155.	2.5	135
276	Regulation of Raf-1 kinase activity by the 14-3-3 family of proteins EMBO Journal, 1995, 14, 685-696.	7.8	146
277	Immunocytochemical Localization of Eight Protein Kinase C Isozymes Overexpressed in NIH 3T3 Fibroblasts. Journal of Biological Chemistry, 1995, 270, 9991-10001.	3.4	280
278	Identification of the primary growth response gene, ST2/T1, as a gene whose expression is differentially regulated by different protein kinase C isozymes. FEBS Letters, 1995, 372, 189-193.	2.8	7
279	Regulation of Raf-1 kinase activity by the 14-3-3 family of proteins. EMBO Journal, 1995, 14, 685-96.	7.8	44
280	Differential Role of Protein Kinase C in Cytokine Induced Lymphocyte-Endothelium Interaction In Vitro. Scandinavian Journal of Immunology, 1994, 40, 395-402.	2.7	15
281	Association of MEK1 with p21ras.GMPPNP is dependent on B-Raf Molecular and Cellular Biology, 1994, 14, 7153-7162.	2.3	75
282	Mechanism of inhibition of Raf-1 by protein kinase A Molecular and Cellular Biology, 1994, 14, 6696-6703.	2.3	310
283	Zinc finger domains and phorbol ester pharmacophore. Analysis of binding to mutated form of protein kinase C zeta and the vav and c-raf proto-oncogene products. Journal of Biological Chemistry, 1994, 269, 11590-11594.	3.4	108
284	Mechanism of Inhibition of Raf-1 by Protein Kinase A. Molecular and Cellular Biology, 1994, 14, 6696-6703.	2.3	112
285	Association of MEK1 with p21ras.GMPPNP is dependent on B-Raf. Molecular and Cellular Biology, 1994, 14, 7153-7162.	2.3	26
286	Mutant p53 potentiates protein kinase C induction of vascular endothelial growth factor expression. Oncogene, 1994, 9, 963-9.	5.9	339
287	Zinc finger domains and phorbol ester pharmacophore. Analysis of binding to mutated form of protein kinase C zeta and the vav and c-raf proto-oncogene products. Journal of Biological Chemistry, 1994, 269, 11590-4.	3.4	99
288	Protein kinase CÎ \pm activates RAF-1 by direct phosphorylation. Nature, 1993, 364, 249-252.	27.8	1,297

#	Article	IF	CITATIONS
289	Overexpression of protein kinase C-delta and -epsilon in NIH 3T3 cells induces opposite effects on growth, morphology, anchorage dependence, and tumorigenicity Journal of Biological Chemistry, 1993, 268, 6090-6096.	3.4	490
290	Raf revertant cells resist transformation by non-nuclear oncogenes and are deficient in the induction of early response genes by TPA and serum. Oncogene, 1993, 8, 361-70.	5.9	19
291	Overexpression of protein kinase C-delta and -epsilon in NIH 3T3 cells induces opposite effects on growth, morphology, anchorage dependence, and tumorigenicity. Journal of Biological Chemistry, 1993, 268, 6090-6.	3.4	420
292	The Role of Raf-1 Phosphorylation in Signal Transduction. Advances in Cancer Research, 1992, 58, 53-73.	5.0	128
293	Mouse protein kinase Cdelta., the major isoform expressed in mouse hemopoietic cells: sequence of the cDNA, expression patterns, and characterization of the protein. Biochemistry, 1991, 30, 7925-7931.	2.5	90
294	Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature, 1991, 349, 426-428.	27.8	489
295	An inhibitory mutant of c-Raf-1 blocks v-Src-induced activation of the Egr-1 promoter. Journal of Biological Chemistry, 1991, 266, 20594-7.	3.4	46
296	Expression of protein kinase C genes in hemopoietic cells is cell-type- and B cell-differentiation stage specific. Journal of Immunology, 1991, 147, 3981-7.	0.8	109
297	Mutational activation of c-raf-1 and definition of the minimal transforming sequence Molecular and Cellular Biology, 1990, 10, 2503-2512.	2.3	240
298	Mutational Activation of c- <i>raf-</i> 1 and Definition of the Minimal Transforming Sequence. Molecular and Cellular Biology, 1990, 10, 2503-2512.	2.3	136
299	Probing structure and function of the raf protein kinase domain with monoclonal antibodies. Oncogene, 1990, 5, 713-20.	5.9	35
300	A raf/myc virus immortalized macrophage cell line which supports the growth of B-cell and B-cell hybridomas. Oncogene, 1990, 5, 1377-82.	5.9	4
301	Complete coding sequence of a human B-raf cDNA and detection of B-raf protein kinase with isozyme specific antibodies. Oncogene, 1990, 5, 1775-80.	5.9	104
302	Preparation of raf-oncogene-specific antiserum with raf protein produced in E. coli. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1988, 949, 233-239.	2.4	18
303	Expression of human c-raf-1 oncogene proteins in E. coli. Biochemical and Biophysical Research Communications, 1988, 152, 1045-1049.	2.1	3
304	A-Raf. The AFCS-nature Molecule Pages, 0, , .	0.2	13