List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3719440/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revealing the Hidden Costs of Organization in Host–Guest Chemistry Using Chloride-Binding Foldamers and Their Solvent Dependence. Journal of the American Chemical Society, 2022, 144, 1274-1287.	13.7	22
2	Quantifying the barrier for the movement of cyclobis(paraquat-p-phenylene) over the dication of monopyrrolotetrathiafulvalene. Organic and Biomolecular Chemistry, 2022, , .	2.8	3
3	Recognition competes with hydration in anion-triggered monolayer formation of cyanostar supra-amphiphiles at aqueous interfaces. Chemical Science, 2022, 13, 4283-4294.	7.4	7
4	Receptor Induced Doping of Conjugated Polymer Transistors: A Strategy for Selective and Ultrasensitive Phosphate Detection in Complex Aqueous Environments. Advanced Electronic Materials, 2022, 8, .	5.1	4
5	Rigidity and Flexibility in Rotaxanes and Their Relatives; On Being Stubborn and Easy-Going. Frontiers in Chemistry, 2022, 10, 856173.	3.6	9
6	Quantitative Energy Transfer in Organic Nanoparticles Based on Small-Molecule Ionic Isolation Lattices for UV Light Harvesting. ACS Applied Nano Materials, 2022, 5, 13887-13893.	5.0	6
7	Polarity-Tolerant Chloride Binding in Foldamer Capsules by Programmed Solvent-Exclusion. Journal of the American Chemical Society, 2021, 143, 3191-3204.	13.7	32
8	Chain Entropy Beats Hydrogen Bonds to Unfold and Thread Dialcohol Phosphates inside Cyanostar Macrocycles To Form [3]Pseudorotaxanes. Journal of Organic Chemistry, 2021, 86, 4532-4546.	3.2	10
9	Ultrabright Fluorescent Organic Nanoparticles Based on Smallâ€Molecule Ionic Isolation Lattices**. Angewandte Chemie - International Edition, 2021, 60, 9450-9458.	13.8	29
10	Ultrabright Fluorescent Organic Nanoparticles Based on Smallâ€Molecule Ionic Isolation Lattices**. Angewandte Chemie, 2021, 133, 9536-9544.	2.0	2
11	Anion-Selective Electrodes Based On a CH-Hydrogen Bonding Bis-macrocyclic Ionophore with a Clamshell Architecture. Analytical Chemistry, 2021, 93, 5412-5419.	6.5	7
12	Frontispiece: Ultrabright Fluorescent Organic Nanoparticles Based on Smallâ€Molecule Ionic Isolation Lattices. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
13	Frontispiz: Ultrabright Fluorescent Organic Nanoparticles Based on Smallâ€Molecule Ionic Isolation Lattices. Angewandte Chemie, 2021, 133, .	2.0	0
14	Individual development plans — experiences made in graduate student training. Analytical and Bioanalytical Chemistry, 2021, 413, 5681-5684.	3.7	2
15	Multi-state amine sensing by electron transfers in a BODIPY probe. Organic and Biomolecular Chemistry, 2020, 18, 431-440.	2.8	19
16	Recognition and applications of anion–anion dimers based on anti-electrostatic hydrogen bonds (AEHBs). Chemical Society Reviews, 2020, 49, 7893-7906.	38.1	69
17	Nanoporous Thin Films Formed from Photocleavable Diblock Copolymers on Gold Substrates Modified with Thiolate Self-Assembled Monolayers. Langmuir, 2020, 36, 9259-9268.	3.5	9
18	Plug-and-Play Optical Materials from Fluorescent Dyes and Macrocycles. CheM, 2020, 6, 1978-1997.	11.7	124

#	Article	IF	CITATIONS
19	Molecular Recognition and Hydration Energy Mismatch Combine To Inform Ion Binding Selectivity at Aqueous Interfaces. Journal of Physical Chemistry A, 2020, 124, 10171-10180.	2.5	10
20	Zero-Overlap Fluorophores for Fluorescent Studies at Any Concentration. Journal of the American Chemical Society, 2020, 142, 12167-12180.	13.7	30
21	Solution-Mediated Annealing Pathways Are Critical for Supramolecular Ordering of Complex Macrocycles at Surfaces. Journal of Physical Chemistry C, 2020, 124, 6689-6699.	3.1	7
22	Thermodynamic Signatures of the Origin of <i>Anti</i> -Hofmeister Selectivity for Phosphate at Aqueous Interfaces. Journal of Physical Chemistry A, 2020, 124, 5621-5630.	2.5	23
23	Tunable Adhesion from Stoichiometry-Controlled and Sequence-Defined Supramolecular Polymers Emerges Hierarchically from Cyanostar-Stabilized Anion–Anion Linkages. Journal of the American Chemical Society, 2020, 142, 2579-2591.	13.7	68
24	Bimetallic Bis-anion Cascade Complexes of Magnesium in Nonaqueous Solution. Inorganic Chemistry, 2020, 59, 5939-5948.	4.0	1
25	Sequence-Defined Macrocycles for Understanding and Controlling the Build-up of Hierarchical Order in Self-Assembled 2D Arrays. Journal of the American Chemical Society, 2019, 141, 17588-17600.	13.7	22
26	Cages Driven Away from Equilibrium Binding by Electric Fields. CheM, 2019, 5, 1017-1019.	11.7	5
27	Interfacial Supramolecular Structures of Amphiphilic Receptors Drive Aqueous Phosphate Recognition. Journal of the American Chemical Society, 2019, 141, 7876-7886.	13.7	42
28	Salts accelerate the switching kinetics of a cyclobis(paraquat- <i>p</i> -phenylene) [2]rotaxane. Organic and Biomolecular Chemistry, 2019, 17, 2432-2441.	2.8	7
29	Linear Supramolecular Polymers Driven by Anion–Anion Dimerization of Difunctional Phosphonate Monomers Inside Cyanostar Macrocycles. Journal of the American Chemical Society, 2019, 141, 4980-4989.	13.7	57
30	Chloride capture using a C–H hydrogen-bonding cage. Science, 2019, 365, 159-161.	12.6	167
31	Phosphate–phosphate oligomerization drives higher order co-assemblies with stacks of cyanostar macrocycles. Chemical Science, 2018, 9, 2863-2872.	7.4	63
32	Host–Host Interactions Control Selfâ€assembly and Switching of Triple and Double Decker Stacks of Tricarbazole Macrocycles Coâ€assembled with antiâ€Electrostatic Bisulfate Dimers. Chemistry - A European Journal, 2018, 24, 9841-9852.	3.3	24
33	Cyanostar: C–H Hydrogen Bonding Neutral Carrier Scaffold for Anion-Selective Sensors. Analytical Chemistry, 2018, 90, 1925-1933.	6.5	32
34	Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry. Nature Chemistry, 2018, 10, 8-16.	13.6	143
35	Allosteric Control of Photofoldamers for Selecting between Anion Regulation and Double-to-Single Helix Switching. Journal of the American Chemical Society, 2018, 140, 17711-17723.	13.7	90
36	Sequence-Controlled Stimuli-Responsive Single–Double Helix Conversion between 1:1 and 2:2 Chloride-Foldamer Complexes. Journal of the American Chemical Society, 2018, 140, 15477-15486.	13.7	59

#	Article	IF	CITATIONS
37	Amphiphile self-assembly dynamics at the solution-solid interface reveal asymmetry in head/tail desorption. Chemical Communications, 2018, 54, 10076-10079.	4.1	8
38	Anionâ€Binding Macrocycles Operate Beyond the Electrostatic Regime: Interaction Distances Matter. Chemistry - A European Journal, 2018, 24, 14409-14417.	3.3	20
39	Supramolecular Regulation of Anions Enhances Conductivity and Transference Number of Lithium in Liquid Electrolytes. Journal of the American Chemical Society, 2018, 140, 10932-10936.	13.7	70
40	Arginine–Phosphate Recognition Enhanced in Phospholipid Monolayers at Aqueous Interfaces. Journal of Physical Chemistry C, 2018, 122, 26362-26371.	3.1	29
41	Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9391-9396.	7.1	19
42	Programmed Negative Allostery with Guest-Selected Rotamers Control Anion–Anion Complexes of Stackable Macrocycles. Journal of the American Chemical Society, 2018, 140, 7773-7777.	13.7	19
43	Ion-Pair Oligomerization of Chromogenic Triangulenium Cations with Cyanostar-Modified Anions That Controls Emission in Hierarchical Materials. Journal of the American Chemical Society, 2017, 139, 6226-6233.	13.7	37
44	Ion Pairing and Coâ€facial Stacking Drive Highâ€Fidelity Bisulfate Assembly with Cyanostar Macrocyclic Hosts. Chemistry - A European Journal, 2017, 23, 10652-10662.	3.3	56
45	Supramolecular effects in self-assembled monolayers: general discussion. Faraday Discussions, 2017, 204, 123-158.	3.2	2
46	Preparing macromolecular systems on surfaces: general discussion. Faraday Discussions, 2017, 204, 395-418.	3.2	0
47	Supramolecular systems at liquid–solid interfaces: general discussion. Faraday Discussions, 2017, 204, 271-295.	3.2	2
48	Highâ€Fidelity Multistate Switching with Anion–Anion and Acid–Anion Dimers of Organophosphates in Cyanostar Complexes. Angewandte Chemie, 2017, 129, 13263-13267.	2.0	7
49	Highâ€Fidelity Multistate Switching with Anion–Anion and Acid–Anion Dimers of Organophosphates in Cyanostar Complexes. Angewandte Chemie - International Edition, 2017, 56, 13083-13087.	13.8	48
50	Enhanced detection of explosives by turn-on resonance Raman upon host–guest complexation in solution and the solid state. Chemical Communications, 2017, 53, 10918-10921.	4.1	9
51	Anion Binding in Solution: Beyond the Electrostatic Regime. CheM, 2017, 3, 411-427.	11.7	129
52	lonic manipulation of charge-transfer and photodynamics of [60]fullerene confined in pyrrolo-tetrathiafulvalene cage. Chemical Communications, 2017, 53, 9898-9901.	4.1	6
53	Physical and chemical model of ion stability and movement within the dynamic and voltage-gated STM tip–surface tunneling junction. Faraday Discussions, 2017, 204, 159-172.	3.2	4
54	Creating molecular macrocycles for anion recognition. Beilstein Journal of Organic Chemistry, 2016, 12, 611-627.	2.2	32

#	Article	IF	CITATIONS
55	Double Switching of Two Rings in Palindromic [3]Pseudorotaxanes: Cooperativity and Mechanism of Motion. Inorganic Chemistry, 2016, 55, 3767-3776.	4.0	16
56	Anions Stabilize Each Other inside Macrocyclic Hosts. Angewandte Chemie, 2016, 128, 14263-14268.	2.0	25
57	Anions Stabilize Each Other inside Macrocyclic Hosts. Angewandte Chemie - International Edition, 2016, 55, 14057-14062.	13.8	115
58	A high-yield synthesis and acid–base response of phosphate-templated [3]rotaxanes. Chemical Communications, 2016, 52, 13675-13678.	4.1	39
59	Extreme Stabilization and Redox Switching of Organic Anions and Radical Anions by Large-Cavity, CH Hydrogen-Bonding Cyanostar Macrocycles. Journal of the American Chemical Society, 2016, 138, 15057-15065.	13.7	53
60	Multifunctional Tricarbazolo Triazolophane Macrocycles: Oneâ€Pot Preparation, Anion Binding, and Hierarchical Selfâ€Organization of Multilayers. Chemistry - A European Journal, 2016, 22, 560-569.	3.3	74
61	Size-matched recognition of large anions by cyanostar macrocycles is saved when solvent-bias is avoided. Chemical Communications, 2016, 52, 8683-8686.	4.1	50
62	Flexibility Coexists with Shape-Persistence in Cyanostar Macrocycles. Journal of the American Chemical Society, 2016, 138, 4843-4851.	13.7	53
63	Electrostatic and Allosteric Cooperativity in Ion-Pair Binding: A Quantitative and Coupled Experiment–Theory Study with Aryl–Triazole–Ether Macrocycles. Journal of the American Chemical Society, 2015, 137, 9746-9757.	13.7	69
64	Macromolecular Crystallography for Synthetic Abiological Molecules: Combining xMDFF and PHENIX for Structure Determination of Cyanostar Macrocycles. Journal of the American Chemical Society, 2015, 137, 8810-8818.	13.7	29
65	Living on the edge: Tuning supramolecular interactions to design two-dimensional organic crystals near the boundary of two stable structural phases. Journal of Chemical Physics, 2015, 142, 101914.	3.0	18
66	Self-assembly snapshots of a 2Â×Â2 copper(I) grid. Supramolecular Chemistry, 2014, 26, 267-279.	1.2	9
67	An Overlooked yet Ubiquitous Fluoride Congenitor: Binding Bifluoride in Triazolophanes Using Computer-Aided Design. Journal of the American Chemical Society, 2014, 136, 5078-5089.	13.7	47
68	Mechanistic Evaluation of Motion in Redox-Driven Rotaxanes Reveals Longer Linkers Hasten Forward Escapes and Hinder Backward Translations. Journal of the American Chemical Society, 2014, 136, 6373-6384.	13.7	48
69	Multiplying the electron storage capacity of a bis-tetrazine pincer ligand. Dalton Transactions, 2014, 43, 6513-6524.	3.3	39
70	Selective Anion-Induced Crystal Switching and Binding in Surface Monolayers Modulated by Electric Fields from Scanning Probes. ACS Nano, 2014, 8, 10858-10869.	14.6	48
71	Anion-induced dimerization of 5-fold symmetric cyanostars in 3D crystalline solids and 2D self-assembled crystals. Chemical Communications, 2014, 50, 9827.	4.1	54
72	β-Sheet-like Hydrogen Bonds Interlock the Helical Turns of a Photoswitchable Foldamer To Enhance the Binding and Release of Chloride. Journal of Organic Chemistry, 2014, 79, 8383-8396.	3.2	56

#	Article	IF	CITATIONS
73	Quantifying chloride binding and salt extraction with poly(methyl methacrylate) copolymers bearing aryl-triazoles as anion receptor side chains. Chemical Communications, 2014, 50, 13285-13288.	4.1	39
74	How to print a crystal structure model in 3D. CrystEngComm, 2014, 16, 5488-5493.	2.6	33
75	C vs N: Which End of the Cyanide Anion Is a Better Hydrogen Bond Acceptor?. Journal of Physical Chemistry A, 2014, 118, 7418-7423.	2.5	22
76	Photoresponsive receptors for binding and releasing anions. Journal of Physical Organic Chemistry, 2013, 26, 79-86.	1.9	78
77	Hydrophobic Collapse of Foldamer Capsules Drives Picomolar-Level Chloride Binding in Aqueous Acetonitrile Solutions. Journal of the American Chemical Society, 2013, 135, 14401-14412.	13.7	169
78	A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nature Chemistry, 2013, 5, 704-710.	13.6	345
79	Pressure effects in the synthesis of isomeric rotaxanes. Chemical Communications, 2013, 49, 5936.	4.1	14
80	Shape persistence delivers lock-and-key chloride binding in triazolophanes. Chemical Communications, 2012, 48, 5065.	4.1	82
81	A stereodynamic and redox-switchable encapsulation-complex containing a copper ion held by a tris-quinolinyl basket. Chemical Communications, 2012, 48, 4429.	4.1	19
82	Anion effects on the cyclobis(paraquat-p-phenylene) host. Chemical Communications, 2012, 48, 5157.	4.1	23
83	Quantification of the π–π Interactions that Govern Tertiary Structure in Donor–Acceptor [2]Pseudorotaxanes. Journal of the American Chemical Society, 2012, 134, 3857-3863.	13.7	31
84	Binding Anions in Rigid and Reconfigurable Triazole Receptors. Topics in Heterocyclic Chemistry, 2012, , 85-107.	0.2	26
85	High hopes: can molecular electronics realise its potential?. Chemical Society Reviews, 2012, 41, 4827.	38.1	277
86	Two levels of conformational pre-organization consolidate strong CH hydrogen bonds in chloride–triazolophane complexes. Chemical Communications, 2011, 47, 5979.	4.1	60
87	Polarized Naphthalimide CH Donors Enhance Cl [–] Binding within an Aryl-Triazole Receptor. Organic Letters, 2011, 13, 6260-6263.	4.6	55
88	Bond elongation in the anion radical of coordinated tetrazine ligands: A crystallographic, spectroscopic and computational study of a reduced {Re(CO)3Cl} complex. Inorganica Chimica Acta, 2011, 374, 620-626.	2.4	22
89	Ion-Selective Electrodes Based on a Pyridyl-Containing Triazolophane: Altering Halide Selectivity by Combining Dipole-Promoted Cooperativity with Hydrogen Bonding. Analytical Chemistry, 2011, 83, 3455-3461.	6.5	45
90	Molecular Logic Gates Using Surface-Enhanced Raman-Scattered Light. Journal of the American Chemical Society, 2011, 133, 7288-7291.	13.7	43

#	Article	IF	CITATIONS
91	Aromatic and Aliphatic CH Hydrogen Bonds Fight for Chloride while Competing Alongside Ion Pairing within Triazolophanes. Chemistry - A European Journal, 2011, 17, 312-321.	3.3	98
92	Nanometerâ€6ized Reactor—A Porphyrinâ€Based Model System for Anion Species. Chemistry - A European Journal, 2011, 17, 7499-7505.	3.3	16
93	From Atomic to Molecular Anions: A Neutral Receptor Captures Cyanide Using Strong CH Hydrogen Bonds. Chemistry - A European Journal, 2011, 17, 9123-9129.	3.3	41
94	Interconverting Two Classes of Architectures by Reduction of a Selfâ€Sorting Mixture. Angewandte Chemie - International Edition, 2010, 49, 4628-4632.	13.8	52
95	Thinking inside and outside the box. Nature Chemistry, 2010, 2, 349-350.	13.6	5
96	Click chemistry generates privileged CH hydrogen-bonding triazoles: the latest addition to anion supramolecular chemistry. Chemical Society Reviews, 2010, 39, 1262.	38.1	573
97	Flipping the Switch on Chloride Concentrations with a Light-Active Foldamer. Journal of the American Chemical Society, 2010, 132, 12838-12840.	13.7	227
98	Intramolecular Hydrogen Bonds Preorganize an Aryl-triazole Receptor into a Crescent for Chloride Binding. Organic Letters, 2010, 12, 2100-2102.	4.6	119
99	A tristable [2]pseudo[2]rotaxane. Chemical Communications, 2010, 46, 871.	4.1	46
100	Bilability is Defined when One Electron is Used to Switch between Concerted and Stepwise Pathways in Cu(I)-Based Bistable [2/3]Pseudorotaxanes. Journal of the American Chemical Society, 2010, 132, 1665-1675.	13.7	64
101	Triazolophanes: A New Class of Halide-Selective Ionophores for Potentiometric Sensors. Analytical Chemistry, 2010, 82, 368-375.	6.5	70
102	Turning on Resonant SERRS Using the Chromophoreâ^'Plasmon Coupling Created by Hostâ^'Guest Complexation at a Plasmonic Nanoarray. Journal of the American Chemical Society, 2010, 132, 6099-6107.	13.7	44
103	1,2,3-Triazoles and the Expanding Utility of Charge Neutral CH··ÀAnion Interactions. Topics in Heterocyclic Chemistry, 2010, , 341-366.	0.2	28
104	Modelling triazolophane–halide binding equilibria using Sivvu analysis of UV–vis titration data recorded under medium binding conditions. Supramolecular Chemistry, 2009, 21, 111-117.	1.2	33
105	Molecular Muscle based Nano-Electro-Mechanical-Systems (NEMS). , 2009, , .		0
106	Strong CHâ‹â‹â‹Halide Hydrogen Bonds from 1,2,3â€Triazoles Quantified Using Preâ€Organized and Shapeâ€Persistent Triazolophanes. ChemPhysChem, 2009, 10, 2535-2540.	2.1	50
107	Reduction of a Redox-Active Ligand Drives Switching in a Cu(I) Pseudorotaxane by a Bimolecular Mechanism. Journal of the American Chemical Society, 2009, 131, 1305-1313.	13.7	62
108	Determination of Binding Strengths of a Hostâ^'Guest Complex Using Resonance Raman Scattering. Journal of Physical Chemistry A, 2009, 113, 9450-9457.	2.5	31

#	Article	IF	CITATIONS
109	Active Molecular Plasmonics: Controlling Plasmon Resonances with Molecular Switches. Nano Letters, 2009, 9, 819-825.	9.1	213
110	A Mechanical Actuator Driven Electrochemically by Artificial Molecular Muscles. ACS Nano, 2009, 3, 291-300.	14.6	241
111	Molecular active plasmonics: controlling plasmon resonances with molecular machines. Proceedings of SPIE, 2009, , .	0.8	Ο
112	Pinpointing the Extent of Electronic Delocalization in the Re(I)-to-Tetrazine Charge-Separated Excited State Using Time-Resolved Infrared Spectroscopy. Journal of the American Chemical Society, 2009, 131, 11656-11657.	13.7	32
113	Ï€â€Stacking Enhanced Dynamic and Redoxâ€Switchable Selfâ€Assembly of Donor–Acceptor Metalloâ€{2]Catenanes from Diimide Derivatives and Crown Ethers. Chemistry - A European Journal, 2008, 14, 10211-10218.	3.3	43
114	Pure CH Hydrogen Bonding to Chloride Ions: A Preorganized and Rigid Macrocyclic Receptor. Angewandte Chemie - International Edition, 2008, 47, 2649-2652.	13.8	413
115	Dipole-Promoted and Size-Dependent Cooperativity between Pyridyl-Containing Triazolophanes and Halides Leads to Persistent Sandwich Complexes with Iodide. Journal of the American Chemical Society, 2008, 130, 17293-17295.	13.7	139
116	Strong, Size-Selective, and Electronically Tunable Câ^'H··ĤAlide Binding with Steric Control over Aggregation from Synthetically Modular, Shape-Persistent [3 _{<i>4</i>}]Triazolophanes. Journal of the American Chemical Society, 2008, 130, 12111-12122.	13.7	268
117	A Redox-Driven Multicomponent Molecular Shuttle. Journal of the American Chemical Society, 2007, 129, 12159-12171.	13.7	180
118	Functionally Rigid Bistable [2]Rotaxanes. Journal of the American Chemical Society, 2007, 129, 960-970.	13.7	125
119	Two Classes of Alongside Charge-Transfer Interactions Defined in One [2]Catenane. Journal of the American Chemical Society, 2007, 129, 7354-7363.	13.7	54
120	Switching Surface Chemistry with Supramolecular Machines. Langmuir, 2007, 23, 31-34.	3.5	38
121	Can terdentate 2,6-bis(1,2,3-triazol-4-yl)pyridines form stable coordination compounds?. Chemical Communications, 2007, , 2692.	4.1	239
122	Preparation of Cyclobis(paraquat-p-phenylene)-Based [2]Rotaxanes Without Flexible Glycol Chains. Angewandte Chemie - International Edition, 2007, 46, 6093-6097.	13.8	32
123	Using Molecular Force to Overcome Steric Barriers in a Springlike Molecular Ouroboros**. Advanced Functional Materials, 2007, 17, 751-762.	14.9	39
124	Toward Electrochemically Controllable Tristable Three-Station [2]Catenanes. Chemistry - an Asian Journal, 2007, 2, 76-93.	3.3	70
125	Operating Molecular Elevators. Journal of the American Chemical Society, 2006, 128, 1489-1499.	13.7	280
126	Quantifying the working stroke of tetrathiafulvalene-based electrochemically-driven linear motor-molecules. Chemical Communications, 2006, , 144-146.	4.1	58

#	Article	IF	CITATIONS
127	Locking down the Electronic Structure of (Monopyrrolo)tetrathiafulvalene in [2]Rotaxanes. Organic Letters, 2006, 8, 2205-2208.	4.6	43
128	Supramolecular Self-Assembly of Dendronized Polymers:Â Reversible Control of the Polymer Architectures through Acidâ^Base Reactions. Journal of the American Chemical Society, 2006, 128, 10707-10715.	13.7	119
129	Cis- andtrans-bis(2-cyanoethylsulfanyl)(decane-1,10-diyldithio)tetrathiafulvalene. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, o677-o680.	0.4	3
130	Models of charge transport and transfer in molecular switch tunnel junctions of bistable catenanes and rotaxanes. Chemical Physics, 2006, 324, 280-290.	1.9	43
131	Ground-State Equilibrium Thermodynamics and Switching Kinetics of Bistable [2]Rotaxanes Switched in Solution, Polymer Gels, and Molecular Electronic Devices. Chemistry - A European Journal, 2006, 12, 261-279.	3.3	216
132	Nano Meccano. , 2006, , 193-214.		0
133	Autonomous artificial nanomotor powered by sunlight. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1178-1183.	7.1	460
134	Linear Artificial Molecular Muscles. Journal of the American Chemical Society, 2005, 127, 9745-9759.	13.7	660
135	Shuttling Dynamics in an Acid-Base-Switchable [2]Rotaxane. ChemPhysChem, 2005, 6, 2145-2152.	2.1	99
136	Structural Evidence of Mechanical Shuttling in Condensed Monolayers of Bistable Rotaxane Molecules. Angewandte Chemie - International Edition, 2005, 44, 7035-7039.	13.8	70
137	Versatile Self-Complexing Compounds Based on Covalently Linked Donor-Acceptor Cyclophanes. Chemistry - A European Journal, 2005, 11, 369-385.	3.3	69
138	A Photoactive Molecular Triad as a Nanoscale Power Supply for a Supramolecular Machine. Chemistry - A European Journal, 2005, 11, 6846-6858.	3.3	106
139	Nanoelectronic devices from self-organized molecular switches. Applied Physics A: Materials Science and Processing, 2005, 80, 1197-1209.	2.3	95
140	Template-Directed Syntheses of Configurable and Reconfigurable Molecular Switches. Synthesis, 2005, 2005, 3437-3445.	2.3	5
141	From Cyclophanes to Molecular Machines. , 2005, , 485-518.		3
142	An Electrochemical Color-Switchable RGB Dye:Â Tristable [2]Catenane. Journal of the American Chemical Society, 2005, 127, 15994-15995.	13.7	95
143	A reversible molecular valve. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10029-10034.	7.1	452
144	Structures and Properties of Self-Assembled Monolayers of Bistable [2]Rotaxanes on Au (111) Surfaces from Molecular Dynamics Simulations Validated with Experiment. Journal of the American Chemical Society, 2005, 127, 1563-1575.	13.7	202

#	Article	IF	CITATIONS
145	Molecular Dynamics Simulation of Amphiphilic Bistable [2]Rotaxane Langmuir Monolayers at the Air/Water Interface. Journal of the American Chemical Society, 2005, 127, 14804-14816.	13.7	102
146	The Effect of Reduction on Rhenium(I) Complexes with Binaphthyridine and Biquinoline Ligands:Â A Spectroscopic and Computational Study. Journal of Physical Chemistry A, 2005, 109, 3745-3753.	2.5	26
147	Thermally and Electrochemically Controllable Self-Complexing Molecular Switches. Journal of the American Chemical Society, 2004, 126, 9150-9151.	13.7	116
148	Powering a Supramolecular Machine with a Photoactive Molecular Triad. Small, 2004, 1, 87-90.	10.0	43
149	Molecular-Mechanical Switch-Based Solid-State Electrochromic Devices. Angewandte Chemie - International Edition, 2004, 43, 6486-6491.	13.8	210
150	Meccano on the Nanoscale — A Blueprint for Making Some of the World′s Tiniest Machines. ChemInform, 2004, 35, no.	0.0	1
151	The Role of Physical Environment on Molecular Electromechanical Switching. Chemistry - A European Journal, 2004, 10, 6558-6564.	3.3	170
152	Synthesis and electronic properties of mononuclear osmium(II) and rhenium(I) complexes containing ligands derived from [2,3-a:3′,2′-c]dipyridophenazine (ppb). Polyhedron, 2004, 23, 1427-1439.	2.2	17
153	Langmuir and Langmuirâ `Blodgett Films of Amphiphilic Bistable Rotaxanes. Langmuir, 2004, 20, 5809-5828.	3.5	63
154	Mechanical Shuttling of Linear Motor-Molecules in Condensed Phases on Solid Substrates. Nano Letters, 2004, 4, 2065-2071.	9.1	111
155	Meccano on the Nanoscale—A Blueprint for Making Some of the World's Tiniest Machines. Australian Journal of Chemistry, 2004, 57, 301.	0.9	228
156	A nanomechanical device based on linear molecular motors. Applied Physics Letters, 2004, 85, 5391-5393.	3.3	210
157	CHEMISTRY: Enhanced: Whence Molecular Electronics?. Science, 2004, 306, 2055-2056.	12.6	453
158	Rhenium carbonyl complexes of 2,6-diazaanthracene-9,10-dione(daad): spectroelectrochemistry of BrRe(CO)4daad. Journal of Organometallic Chemistry, 2003, 675, 57-64.	1.8	5
159	2,6-Diazaanthracene-9,10-dione and its Radical Anion— A Structural and Spectroscopic Investigation. Australian Journal of Chemistry, 2003, 56, 607.	0.9	1
160	Vibrational Spectra of Dipyrido[3,2-a:2′,3′-c]phenazine and Its Radical Anion Analyzed by Ab Initio Calculations and Deuteration Studies. Bulletin of the Chemical Society of Japan, 2002, 75, 933-942.	3.2	33
161	Electron localisation in electrochemically reduced mono- and bi-nuclear rhenium(i) complexes with bridged polypyridyl ligands. Dalton Transactions RSC, 2002, , 1180.	2.3	17
162	Probing the Nature of the Redox Products and Lowest Excited State of [(bpy)2Ru(μ-bptz)Ru(bpy)2]4+: A Resonance Raman Study. European Journal of Inorganic Chemistry, 2002, 2002, 554-563.	2.0	41

#	Article	IF	CITATIONS
163	Revealing the chromophoric composition of multichromophoric polypyridyl complexes of Re(I) and Os(II): a resonance Raman study. Journal of Raman Spectroscopy, 2002, 33, 434-442.	2.5	14
164	ATR Infrared Spectroelectrochemistry of the Reduction Products of Anthraquinone Sulfonates in Aqueous Solutions. Applied Spectroscopy, 2000, 54, 496-501.	2.2	4
165	Metal-to-ligand charge-transfer excited-states in binuclear copper(I) complexes. Tuning MLCT excited-states through structural modification of bridging ligands. A resonance Raman study. Dalton Transactions RSC, 2000, , 121-127.	2.3	13
166	Templated Synthesis of Interlocked Molecules. Topics in Current Chemistry, 0, , 203-259.	4.0	176
167	Towards aÂRational Design of Molecular Switches and Sensors from their Basic Building Blocks. , 0, , 99-132.		87