## Maren Wellenreuther

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3719401/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                            | IF               | CITATIONS       |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|
| 1  | Phylogeographic structure and historical demography of tarakihi ( <i>Nemadactylus macropterus</i> )<br>and king tarakihi ( <i>Nemadactylus</i> n.sp.) in New Zealand. New Zealand Journal of Marine and<br>Freshwater Research, 2022, 56, 247-271. | 2.0              | 8               |
| 2  | Evaluating new species for aquaculture: A genomic dissection of growth in the New Zealand silver trevally ( <i>Pseudocaranx georgianus</i> ). Evolutionary Applications, 2022, 15, 591-602.                                                        | 3.1              | 12              |
| 3  | Unraveling the complex genetic basis of growth in New Zealand silver trevally ( <i>Pseudocaranx) Tj ETQq1 1 0.78</i>                                                                                                                               | 4314 rgB]<br>1.8 | Overlock  <br>8 |
| 4  | Genomic prediction of growth in a commercially, recreationally, and culturally important marine<br>resource, the Australian snapper ( <i>Chrysophrys auratus</i> ). G3: Genes, Genomes, Genetics, 2022, 12, .                                      | 1.8              | 5               |
| 5  | Differential expression analyses reveal extensive transcriptional plasticity induced by temperature in<br>New Zealand silver trevally ( Pseudocaranx georgianus ). Evolutionary Applications, 2022, 15, 237-248.                                   | 3.1              | 5               |
| 6  | Supergenes promote ecological stasis in a keystone species. Trends in Genetics, 2022, , .                                                                                                                                                          | 6.7              | 0               |
| 7  | The importance of eco-evolutionary dynamics for predicting and managing insect range shifts.<br>Current Opinion in Insect Science, 2022, 52, 100939.                                                                                               | 4.4              | 4               |
| 8  | Fish as Model Systems to Study Epigenetic Drivers in Human Self-Domestication and Neurodevelopmental Cognitive Disorders. Genes, 2022, 13, 987.                                                                                                    | 2.4              | 4               |
| 9  | The Relative Power of Structural Genomic Variation versus SNPs in Explaining the Quantitative Trait Growth in the Marine Teleost Chrysophrys auratus. Genes, 2022, 13, 1129.                                                                       | 2.4              | 2               |
| 10 | Understanding climate change response in the age of genomics. Journal of Animal Ecology, 2022, 91, 1056-1063.                                                                                                                                      | 2.8              | 9               |
| 11 | Genetic stock structure of New Zealand fish and the use of genomics in fisheries management: an overview and outlook. New Zealand Journal of Zoology, 2021, 48, 1-31.                                                                              | 1.1              | 29              |
| 12 | Locally Adaptive Inversions Modulate Genetic Variation at Different Geographic Scales in a Seaweed Fly. Molecular Biology and Evolution, 2021, 38, 3953-3971.                                                                                      | 8.9              | 48              |
| 13 | Description of the growth hormone gene of the Australasian snapper, Chrysophrys auratus , and<br>associated intra―and interspecific genetic variation. Journal of Fish Biology, 2021, 99, 1060-1070.                                               | 1.6              | 3               |
| 14 | Genome assembly, sex-biased gene expression and dosage compensation in the damselfly Ischnura elegans. Genomics, 2021, 113, 1828-1837.                                                                                                             | 2.9              | 17              |
| 15 | Epigenetic inheritance and reproductive mode in plants and animals. Trends in Ecology and Evolution, 2021, 36, 1124-1140.                                                                                                                          | 8.7              | 70              |
| 16 | A large chromosomal inversion shapes gene expression in seaweed flies ( <i>Coelopa frigida</i> ).<br>Evolution Letters, 2021, 5, 607-624.                                                                                                          | 3.3              | 11              |
| 17 | Genomic Signatures of Domestication Selection in the Australasian Snapper (Chrysophrys auratus).<br>Genes, 2021, 12, 1737.                                                                                                                         | 2.4              | 8               |
| 18 | The genome of New Zealand trevally (Carangidae: Pseudocaranx georgianus) uncovers a XY sex determination locus. BMC Genomics, 2021, 22, 785.                                                                                                       | 2.8              | 11              |

| #  | Article                                                                                                                                                                                             | IF        | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| 19 | Genomeâ€wide analysis reveals the genetic stock structure of hoki ( <i>Macruronus) Tj ETQq1 1 0.784314 rgBT</i>                                                                                     | /Oyerlock | 10 Tf 50 742 |
| 20 | Deep Convolutional Neural Networks for Fish Weight Prediction from Images. , 2021, , .                                                                                                              |           | 4            |
| 21 | An Investigation on Multi-Objective Fish Breeding Program Design. , 2021, , .                                                                                                                       |           | 0            |
| 22 | DNA degradation in fish: Practical solutions and guidelines to improve DNA preservation for genomic research. Ecology and Evolution, 2020, 10, 8643-8651.                                           | 1.9       | 19           |
| 23 | From the woods to the halls of science: Louis Bernatchez's contributions to science, wildlife conservation and people. Evolutionary Applications, 2020, 13, 1105-1116.                              | 3.1       | 3            |
| 24 | Balancing selection via life-history trade-offs maintains an inversion polymorphism in a seaweed fly.<br>Nature Communications, 2020, 11, 670.                                                      | 12.8      | 69           |
| 25 | A Roadmap for Understanding the Evolutionary Significance of Structural Genomic Variation. Trends in Ecology and Evolution, 2020, 35, 561-572.                                                      | 8.7       | 190          |
| 26 | Unlocking the potential of ancient fish DNA in the genomic era. Evolutionary Applications, 2019, 12,<br>1513-1522.                                                                                  | 3.1       | 30           |
| 27 | Predicting hybridisation as a consequence of climate change in damselflies. Insect Conservation and Diversity, 2019, 12, 427-436.                                                                   | 3.0       | 2            |
| 28 | Going beyond SNPs: The role of structural genomic variants in adaptive evolution and species diversification. Molecular Ecology, 2019, 28, 1203-1209.                                               | 3.9       | 178          |
| 29 | Genetic diversity and heritability of economically important traits in captive Australasian snapper<br>(Chrysophrys auratus). Aquaculture, 2019, 505, 190-198.                                      | 3.5       | 23           |
| 30 | The genomic pool of standing structural variation outnumbers single nucleotide polymorphism by threefold in the marine teleost <i>Chrysophrys auratus</i> . Molecular Ecology, 2019, 28, 1210-1223. | 3.9       | 67           |
| 31 | High-Density Linkage Map and QTLs for Growth in Snapper ( <i>Chrysophrys auratus</i> ). G3: Genes,<br>Genomes, Genetics, 2019, 9, 1027-1035.                                                        | 1.8       | 35           |
| 32 | Genetic divergence and phenotypic plasticity contribute to variation in cuticular hydrocarbons in the seaweed fly <i>Coelopa frigida</i> . Ecology and Evolution, 2019, 9, 12156-12170.             | 1.9       | 10           |
| 33 | Domestication and Temperature Modulate Gene Expression Signatures and Growth in the Australasian<br>Snapper <i>Chrysophrys auratus</i> . G3: Genes, Genomes, Genetics, 2019, 9, 105-116.            | 1.8       | 22           |
| 34 | Molecular and ecological signatures of an expanding hybrid zone. Ecology and Evolution, 2018, 8,<br>4793-4806.                                                                                      | 1.9       | 21           |
| 35 | Tidal range and recovery from the impacts of mechanical beach grooming. Ocean and Coastal<br>Management, 2018, 154, 66-71.                                                                          | 4.4       | 8            |
| 36 | Synergistic Integration of Genomics and Ecoevolutionary Dynamics for Sustainable Fisheries: A Reply<br>to Kuparinen and Uusi-HeikkiläTrends in Ecology and Evolution, 2018, 33, 308-310.            | 8.7       | 1            |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Eco-Evolutionary Genomics of Chromosomal Inversions. Trends in Ecology and Evolution, 2018, 33, 427-440.                                                                                                                 | 8.7  | 399       |
| 38 | Inversion frequencies and phenotypic effects are modulated by the environment: insights from a reciprocal transplant study in Coelopa frigida. Evolutionary Ecology, 2018, 32, 683-698.                                  | 1.2  | 9         |
| 39 | Intercontinental karyotype–environment parallelism supports a role for a chromosomal inversion in<br>local adaptation in a seaweed fly. Proceedings of the Royal Society B: Biological Sciences, 2018, 285,<br>20180519. | 2.6  | 37        |
| 40 | Local adaptation along an environmental cline in a species with an inversion polymorphism. Journal of Evolutionary Biology, 2017, 30, 1068-1077.                                                                         | 1.7  | 30        |
| 41 | Fifteen years of quantitative trait loci studies in fish: challenges and future directions. Molecular<br>Ecology, 2017, 26, 1465-1476.                                                                                   | 3.9  | 34        |
| 42 | Harnessing the Power of Genomics to Secure the Future of Seafood. Trends in Ecology and Evolution, 2017, 32, 665-680.                                                                                                    | 8.7  | 202       |
| 43 | Alternative reproductive strategies and the maintenance of female color polymorphism in damselflies.<br>Ecology and Evolution, 2017, 7, 5592-5602.                                                                       | 1.9  | 19        |
| 44 | Balancing selection maintains cryptic colour morphs. Molecular Ecology, 2017, 26, 6185-6188.                                                                                                                             | 3.9  | 9         |
| 45 | Gene expression under thermal stress varies across a geographical range expansion front. Molecular<br>Ecology, 2016, 25, 1141-1156.                                                                                      | 3.9  | 73        |
| 46 | Nonadaptive radiation in damselflies. Evolutionary Applications, 2016, 9, 103-118.                                                                                                                                       | 3.1  | 27        |
| 47 | Women in evolution $\hat{a} \in$ highlighting the changing face of evolutionary biology. Evolutionary Applications, 2016, 9, 3-16.                                                                                       | 3.1  | 22        |
| 48 | Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics.<br>Frontiers in Zoology, 2016, 13, 46.                                                                                      | 2.0  | 75        |
| 49 | Observations of movement dynamics of flying insects using high resolution lidar. Scientific Reports, 2016, 6, 29083.                                                                                                     | 3.3  | 49        |
| 50 | Transcriptome profiling in the damselfly Ischnura elegans identifies genes with sex-biased expression.<br>BMC Genomics, 2016, 17, 985.                                                                                   | 2.8  | 25        |
| 51 | Evolutionary consequences of climateâ€induced range shifts in insects. Biological Reviews, 2016, 91, 1050-1064.                                                                                                          | 10.4 | 63        |
| 52 | Detecting Polygenic Evolution: Problems, Pitfalls, and Promises. Trends in Genetics, 2016, 32, 155-164.                                                                                                                  | 6.7  | 138       |
| 53 | De novo transcriptome of Ischnura elegans provides insights into sensory biology, colour and vision genes. BMC Genomics, 2014, 15, 808.                                                                                  | 2.8  | 46        |
| 54 | Rapid evolution of prezygotic barriers in non-territorial damselflies. Biological Journal of the<br>Linnean Society, 2014, 113, 485-496.                                                                                 | 1.6  | 29        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Sexual selection and genetic colour polymorphisms in animals. Molecular Ecology, 2014, 23, 5398-5414.                                                                                             | 3.9 | 137       |
| 56 | Sex differences in developmental plasticity and canalization shape population divergence in mate preferences. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141636.       | 2.6 | 35        |
| 57 | Genetic divergence predicts reproductive isolation in damselflies. Journal of Evolutionary Biology, 2014, 27, 76-87.                                                                              | 1.7 | 58        |
| 58 | Ontogenetic shifts in male mating preference and morph-specific polyandry in a female colour polymorphic insect. BMC Evolutionary Biology, 2013, 13, 116.                                         | 3.2 | 25        |
| 59 | Male-biased recombination in odonates: insights from a linkage map of the damselfly Ischnura elegans.<br>Journal of Genetics, 2013, 92, 115-119.                                                  | 0.7 | 6         |
| 60 | Rare Events in Remote Dark-Field Spectroscopy: An Ecological Case Study of Insects. IEEE Journal of<br>Selected Topics in Quantum Electronics, 2012, 18, 1573-1582.                               | 2.9 | 25        |
| 61 | Don't Fall Off the Adaptation Cliff: When Asymmetrical Fitness Selects for Suboptimal Traits. PLoS<br>ONE, 2012, 7, e34889.                                                                       | 2.5 | 12        |
| 62 | Climatic niche divergence or conservatism? Environmental niches and range limits in ecologically similar damselflies. Ecology, 2012, 93, 1353-1366.                                               | 3.2 | 70        |
| 63 | STRONG ASYMMETRY IN THE RELATIVE STRENGTHS OF PREZYGOTIC AND POSTZYGOTIC BARRIERS BETWEEN TWO DAMSELFLY SISTER SPECIES. Evolution; International Journal of Organic Evolution, 2012, 66, 690-707. | 2.3 | 59        |
| 64 | Permanent Genetic Resources added to Molecular Ecology Resources Database 1 February 2011–31<br>March 2011. Molecular Ecology Resources, 2011, 11, 757-758.                                       | 4.8 | 24        |
| 65 | Environmental and Climatic Determinants of Molecular Diversity and Genetic Population Structure in a Coenagrionid Damselfly. PLoS ONE, 2011, 6, e20440.                                           | 2.5 | 45        |
| 66 | The influence of stochastic and selective forces in the population divergence of female colour polymorphism in damselflies of the genus Ischnura. Heredity, 2011, 107, 513-522.                   | 2.6 | 42        |
| 67 | Introgression and rapid species turnover in sympatric damselflies. BMC Evolutionary Biology, 2011, 11, 210.                                                                                       | 3.2 | 35        |
| 68 | Ten polymorphic microsatellite markers for Hieracium s.s. (Asteraceae). Conservation Genetics<br>Resources, 2010, 2, 295-300.                                                                     | 0.8 | 3         |
| 69 | SIMULATING RANGE EXPANSION: MALE SPECIES RECOGNITION AND LOSS OF PREMATING ISOLATION IN DAMSELFLIES. Evolution; International Journal of Organic Evolution, 2010, 64, 242-252.                    | 2.3 | 51        |
| 70 | A role for ecology in male mate discrimination of immigrant females in Calopteryx damselflies?.<br>Biological Journal of the Linnean Society, 2010, 100, 506-518.                                 | 1.6 | 18        |
| 71 | Comparative Morphology of the Mechanosensory Lateral Line System in a Clade of New Zealand<br>Triplefin Fishes. Brain, Behavior and Evolution, 2010, 75, 292-308.                                 | 1.7 | 22        |
| 72 | Insect monitoring with fluorescence lidar techniques: field experiments. Applied Optics, 2010, 49, 5133.                                                                                          | 2.1 | 44        |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2009–31<br>January 2010. Molecular Ecology Resources, 2010, 10, 576-579.                                                                               | 4.8 | 56        |
| 74 | Multi-disciplinary Lidar Applications. , 2010, , .                                                                                                                                                                                          |     | 0         |
| 75 | The evolution of habitat specialisation in a group of marine triplefin fishes. Evolutionary Ecology, 2009, 23, 557-568.                                                                                                                     | 1.2 | 7         |
| 76 | Trophic ecology of New Zealand triplefin fishes (Family Tripterygiidae). Marine Biology, 2009, 156,<br>1703-1714.                                                                                                                           | 1.5 | 23        |
| 77 | Insect monitoring with fluorescence lidar techniques: feasibility study. Applied Optics, 2009, 48, 5668.                                                                                                                                    | 2.1 | 44        |
| 78 | Isolation and characterization of polymorphic microsatellite loci for the Skyros wall lizard<br><i>Podarcis gaigeae</i> (Squamata: Lacertidae). Molecular Ecology Resources, 2009, 9, 1005-1008.                                            | 4.8 | 6         |
| 79 | Body size and ecological diversification in a sister species pair of triplefin fishes. Evolutionary Ecology, 2008, 22, 575-592.                                                                                                             | 1.2 | 10        |
| 80 | Determinants of habitat association in a sympatric clade of marine fishes. Marine Biology, 2008, 154, 393-402.                                                                                                                              | 1.5 | 19        |
| 81 | Physiology underpins habitat partitioning in a sympatric sisterâ€species pair of intertidal fishes.<br>Functional Ecology, 2008, 22, 1108-1117.                                                                                             | 3.6 | 34        |
| 82 | Consistent spatial patterns across biogeographic gradients in temperate reef fishes. Ecography, 2008, 31, 84-94.                                                                                                                            | 4.5 | 19        |
| 83 | Reproductive isolation in temperate reef fishes. Marine Biology, 2007, 152, 619-630.                                                                                                                                                        | 1.5 | 27        |
| 84 | Ecological diversification in habitat use by subtidal triplefin fishes (Tripterygiidae). Marine Ecology -<br>Progress Series, 2007, 330, 235-246.                                                                                           | 1.9 | 58        |
| 85 | Response of predators to prey abundance: separating the effects of prey density and patch size. Journal of Experimental Marine Biology and Ecology, 2002, 273, 61-71.                                                                       | 1.5 | 37        |
| 86 | Genomic structural variants involved in local adaptation of the European plaice. Peer Community in Evolutionary Biology, 0, , 100095.                                                                                                       | 0.0 | 0         |
| 87 | Genomic Stock Structure of the Marine Teleost Tarakihi (Nemadactylus macropterus) Provides<br>Evidence of Potential Fine-Scale Adaptation and a Temperature-Associated Cline Amid Panmixia.<br>Frontiers in Ecology and Evolution, 0, 10, . | 2.2 | 3         |
| 88 | Fisheries genomics of snapper ( <i>Chrysophrys auratus</i> ) along the west Australian coast.<br>Evolutionary Applications, 0, , .                                                                                                          | 3.1 | 6         |