Edith Garay-Serrano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/37183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Population Structure of Phytophthora infestans from the Toluca Valley of Central Mexico Suggests Genetic Differentiation Between Populations from Cultivated Potato and Wild Solanum spp Phytopathology, 2003, 93, 382-390.	2.2	88
2	Population Structure of Phytophthora infestans in the Toluca Valley Region of Central Mexico. Phytopathology, 2001, 91, 882-890.	2.2	86
3	Selection for Fungicide Resistance Within a Growing Season in Field Populations of Phytophthora infestans at the Center of Origin. Phytopathology, 2006, 96, 1397-1403.	2.2	65
4	Phytophthora ipomoeae sp. nov., a new homothallic species causing leaf blight on Ipomoea longipedunculata in the Toluca Valley of central Mexico. Mycological Research, 2002, 106, 848-856.	2.5	58
5	Phytophthora Root Rot Modifies the Composition of the Avocado Rhizosphere Microbiome and Increases the Abundance of Opportunistic Fungal Pathogens. Frontiers in Microbiology, 2020, 11, 574110.	3.5	40
6	High levels of diversity and population structure in the potato late blight pathogen at the Mexico centre of origin. Molecular Ecology, 2017, 26, 1091-1107.	3.9	37
7	Two new species of <i>Lactarius</i> associated with <i>Alnus acuminata</i> subsp. <i>arguta</i> in Mexico. Mycologia, 2014, 106, 949-962.	1.9	15
8	Morphological and molecular identification of the ectomycorrhizal association of Lactarius fumosibrunneus and Fagus grandifolia var. mexicana trees in eastern Mexico. Mycorrhiza, 2012, 22, 583-588.	2.8	13
9	Two new species of Phylloporus (Fungi, Boletales) from tropical Quercus forests in eastern Mexico. MycoKeys, 2019, 51, 107-123.	1.9	9
10	First Report of <i>Xanthomonas fragariae</i> Causing Angular Leaf Spot on Strawberry Plants in México. Plant Disease, 2014, 98, 682-682.	1.4	8
11	The ectomycorrhizas of Lactarius cuspidoaurantiacus and Lactarius herrerae associated with Alnus acuminata in Central Mexico. Mycorrhiza, 2015, 25, 457-467.	2.8	8
12	First Report of Blight on Ipomoea purpurea Caused by Phytophthora ipomoeae. Plant Disease, 2004, 88, 1283-1283.	1.4	8
13	Ectomycorrhizas of two species of Tuber (clade Puberulum) in the Mexican subtropical cloud forest. Symbiosis, 2018, 76, 1-12.	2.3	7
14	The attractant, but not the trap design, affects the capture of <i>Drosophila suzukii</i> in berry crops. Bulletin of Entomological Research, 2021, 111, 138-145.	1.0	6
15	Effect of Visual Cues and a Fermentation-Based Attractant Blend on Trap Catch of Two Invasive Drosophila Flies in Berry Crops in Mexico. Journal of Economic Entomology, 2021, 114, 152-160.	1.8	5
16	Root Rot of Hydroponically Grown Lettuce Caused by Phytophthora drechsleri in Mexico. Plant Disease, 2009, 93, 1077-1077.	1.4	5
17	Persistence of ecto- and ectendomycorrhizal fungi associated with Pinus montezumae in experimental microcosms. Symbiosis, 2018, 74, 67-78.	2.3	4
18	First Report of Haplotype I-b of Phytophthora infestans in Central Mexico. Plant Disease, 2007, 91, 909-909	1.4	4

#	Article	IF	CITATIONS
19	The ectomycorrhizae of Lactarius rimosellus and Lactarius acatlanensis with the endangered Fagus grandifolia var. mexicana. Symbiosis, 2017, 73, 135-144.	2.3	3
20	First Report of Powdery Mildew on Greenhouse Tomatoes Caused by <i>Oidium neolycopersici</i> in Michoacan, Mexico. Plant Disease, 2007, 91, 1684-1684.	1.4	1
21	Pathogenic Microorganisms Infecting Berries in Mexico. International Journal of Agriculture and Biology, 2021, 25, 1007-1015.	0.4	Ο