
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3717199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell-matrix reciprocity in 3D culture models with nonlinear elasticity. Bioactive Materials, 2022, 9, 316-331.	15.6	36
2	A Temperatureâ€Based Easyâ€6eparable (<i>TempEasy</i>) 3D Hydrogel Coculture System. Advanced Healthcare Materials, 2022, 11, e2102389.	7.6	5
3	The living interface between synthetic biology and biomaterial design. Nature Materials, 2022, 21, 390-397.	27.5	68
4	Novel Synthetic Polymer-Based 3D Contraction Assay: A Versatile Preclinical Research Platform for Fibrosis. ACS Applied Materials & amp; Interfaces, 2022, 14, 19212-19225.	8.0	17
5	Magnetically Driven Hierarchical Alignment in Biomimetic Fibrous Hydrogels. Small, 2022, 18, .	10.0	8
6	Toward Tissue‣ike Material Properties: Inducing In Situ Adaptive Behavior in Fibrous Hydrogels. Advanced Materials, 2022, 34, .	21.0	11
7	Tunable Hybrid Matrices Drive Epithelial Morphogenesis and YAP Translocation. Advanced Science, 2021, 8, 2003380.	11.2	13
8	Semiflexible polymer scaffolds: an overview of conjugation strategies. Polymer Chemistry, 2021, 12, 1362-1392.	3.9	13
9	Fibrous Hydrogels under Multiâ€Axial Deformation: Persistence Length as the Main Determinant of Compression Softening. Advanced Functional Materials, 2021, 31, 2010527.	14.9	17
10	Thin-Film Polyisocyanide-Based Hydrogels for Affinity Biosensors. Journal of Physical Chemistry C, 2021, 125, 12960-12967.	3.1	8
11	Structure and Dynamics of a Temperature-Sensitive Hydrogel. Journal of Physical Chemistry B, 2021, 125, 8219-8224.	2.6	4
12	Magnetic Stiffening in 3D Cell Culture Matrices. Nano Letters, 2021, 21, 6740-6747.	9.1	23
13	Combining Mechanical Tuneability with Function: Biomimetic Fibrous Hydrogels with Nanoparticle Crosslinkers. Advanced Functional Materials, 2021, 31, 2105713.	14.9	17
14	Multivalent Sgc8c-aptamer decorated polymer scaffolds for leukemia targeting. Chemical Communications, 2021, 57, 2744-2747.	4.1	12
15	Biomimetic Networks with Enhanced Photodynamic Antimicrobial Activity from Conjugated Polythiophene/Polyisocyanide Hybrid Hydrogels. Angewandte Chemie - International Edition, 2020, 59, 2720-2724.	13.8	55
16	Biomimetic Networks with Enhanced Photodynamic Antimicrobial Activity from Conjugated Polythiophene/Polyisocyanide Hybrid Hydrogels. Angewandte Chemie, 2020, 132, 2742-2746.	2.0	4
17	Polyisocyanopeptide Hydrogels Are Effectively Sterilized Using Supercritical Carbon Dioxide. Tissue Engineering - Part C: Methods, 2020, 26, 132-141.	2.1	9
18	Antimicrobial and anti-inflammatory thermo-reversible hydrogel for periodontal delivery. Acta Biomaterialia, 2020, 116, 259-267.	8.3	46

#	Article	IF	CITATIONS
19	Polyisocyanide Hydrogels as a Tunable Platform for Mammary Gland Organoid Formation. Advanced Science, 2020, 7, 2001797.	11.2	31
20	Synthetic Extracellular Matrices as a Toolbox to Tune Stem Cell Secretome. ACS Applied Materials & Interfaces, 2020, 12, 56723-56730.	8.0	28
21	Structural characterization of fibrous synthetic hydrogels using fluorescence microscopy. Soft Matter, 2020, 16, 4210-4219.	2.7	31
22	A tunable and injectable local drug delivery system for personalized periodontal application. Journal of Controlled Release, 2020, 324, 134-145.	9.9	56
23	Synthetic Semiflexible and Bioactive Brushes. Biomacromolecules, 2019, 20, 2587-2597.	5.4	10
24	Monitoring ¹¹¹ In-labelled polyisocyanopeptide (PIC) hydrogel wound dressings in full-thickness wounds. Biomaterials Science, 2019, 7, 3041-3050.	5.4	22
25	Cytoskeletal stiffening in synthetic hydrogels. Nature Communications, 2019, 10, 609.	12.8	63
26	Synthetic Extracellular Matrices with Nonlinear Elasticity Regulate Cellular Organization. Biomacromolecules, 2019, 20, 826-834.	5.4	71
27	Virus-like particles as crosslinkers in fibrous biomimetic hydrogels: approaches towards capsid rupture and gel repair. Soft Matter, 2018, 14, 1442-1448.	2.7	8
28	Strong optical nonlinearities of self-assembled polymorphic microstructures of phenylethynyl functionalized fluorenones. Chinese Chemical Letters, 2018, 29, 297-300.	9.0	25
29	Controlling the gelation temperature of biomimetic polyisocyanides. Chinese Chemical Letters, 2018, 29, 281-284.	9.0	19
30	Thermosensitive biomimetic polyisocyanopeptide hydrogels may facilitate wound repair. Biomaterials, 2018, 181, 392-401.	11.4	90
31	Tunable properties based on regioselectivity of 1,2,3-triazole units in axially chiral 2,2′-linked 1,1′-binaphthyl-based copolymers for ions and acid responsiveness. European Polymer Journal, 2018, 108, 191-198.	5.4	3
32	Crosslinking of fibrous hydrogels. Nature Communications, 2018, 9, 2172.	12.8	75
33	Anchoring strength measurements of a lyotropic chromonic liquid crystal on rubbed polyimide surfaces. Liquid Crystals, 2017, 44, 1165-1172.	2.2	13
34	Fully Stable and Homogeneous Lyotropic Liquid Crystal Alignment on Anisotropic Surfaces. Advanced Functional Materials, 2017, 27, 1701209.	14.9	17
35	Nonlinear mechanics of hybrid polymer networks that mimic the complex mechanical environment of cells. Nature Communications, 2017, 8, 15478.	12.8	60
36	Self-Healing Hydrogels Formed by Complexation between Calcium Ions and Bisphosphonate-Functionalized Star-Shaped Polymers. Macromolecules, 2017, 50, 8698-8706.	4.8	39

#	Article	IF	CITATIONS
37	Muscovite mica as a growth template of PC ₆₁ BM crystallites for organic photovoltaics. CrystEngComm, 2017, 19, 4424-4436.	2.6	4
38	Liquid crystal templating as an approach to spatially and temporally organise soft matter. Chemical Society Reviews, 2017, 46, 5935-5949.	38.1	57
39	Strategies To Increase the Thermal Stability of Truly Biomimetic Hydrogels: Combining Hydrophobicity and Directed Hydrogen Bonding. Macromolecules, 2017, 50, 9058-9065.	4.8	36
40	1 <i>H</i> â€1,2,3â€Triazole: From Structure to Function and Catalysis. Journal of Heterocyclic Chemistry, 2017, 54, 1677-1699.	2.6	30
41	Key Developments in Ionic Liquid Crystals. International Journal of Molecular Sciences, 2016, 17, 731.	4.1	68
42	Patterning of Soft Matter across Multiple Length Scales. Advanced Functional Materials, 2016, 26, 2609-2616.	14.9	25
43	Solid-state NMR characterization of tri-ethyleneglycol grafted polyisocyanopeptides. Magnetic Resonance in Chemistry, 2016, 54, 328-333.	1.9	3
44	Smectic A mesophases from luminescent sandic platinum(II) mesogens. Liquid Crystals, 2016, 43, 1709-1713.	2.2	10
45	Synthesis of Functional Fluorescent BODIPYâ€based Dyes through Electrophilic Aromatic Substitution: Straightforward Approach towards Customized Fluorescent Probes. ChemistryOpen, 2016, 5, 450-454.	1.9	7
46	Spatial and temporal patterning of polymers in electric field responsive LC templates. Journal of Materials Chemistry C, 2016, 4, 8263-8269.	5.5	4
47	Order at Extreme Dilution. Advanced Functional Materials, 2016, 26, 9009-9016.	14.9	3
48	Critical behaviour in the nonlinear elastic response of hydrogels. Soft Matter, 2016, 12, 6995-7004.	2.7	9
49	Bundle Formation in Biomimetic Hydrogels. Biomacromolecules, 2016, 17, 2642-2649.	5.4	47
50	Directed peptide amphiphile assembly using aqueous liquid crystal templates in magnetic fields. Soft Matter, 2016, 12, 6518-6525.	2.7	11
51	Directing Soft Matter in Water Using Electric Fields. ACS Applied Materials & Interfaces, 2016, 8, 16303-16309.	8.0	7
52	Unusual temperature dependence of elastic constants of an ambient-temperature discotic nematic liquid crystal. Soft Matter, 2016, 12, 2960-2964.	2.7	13
53	Fibrin-fiber architecture influences cell spreading and differentiation. Cell Adhesion and Migration, 2016, 10, 495-504.	2.7	29
54	Electric field generation of Skyrmion-like structures in a nematic liquid crystal. Soft Matter, 2016, 12, 853-858.	2.7	11

#	Article	IF	CITATIONS
55	Tuning Hydrogel Mechanics Using the Hofmeister Effect. Advanced Functional Materials, 2015, 25, 6503-6510.	14.9	102
56	Controlling Microsized Polymorphic Architectures with Distinct Linear and Nonlinear Optical Properties. Advanced Optical Materials, 2015, 3, 948-956.	7.3	39
57	Maximizing Orientational Order in Polymer-Stabilized Liquid Crystals Using High Magnetic Fields. Macromolecules, 2015, 48, 1002-1008.	4.8	3
58	Ultra-responsive soft matter from strain-stiffening hydrogels. Nature Communications, 2014, 5, 5808.	12.8	186
59	A facile route to hydrophilic ionic liquids. RSC Advances, 2014, 4, 30267-30273.	3.6	4
60	Stabilisation of 2D colloidal assemblies by polymerisation of liquid crystalline matrices for photonic applications. Soft Matter, 2014, 10, 5797-5803.	2.7	14
61	Preparation and characterization of non-linear poly(ethylene glycol) analogs from oligo(ethylene) Tj ETQq1 1 0.78	4314 rgBT 5.4	Qverlock
62	Stiffness versus architecture of single helical polyisocyanopeptides. Chemical Science, 2013, 4, 2357.	7.4	28
63	Towards room-temperature ionic liquid crystals. Journal of Materials Chemistry A, 2013, 1, 354-357.	10.3	22
64	Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature, 2013, 493, 651-655.	27.8	441
65	Templated Hierarchical Selfâ€Assembly of Poly(<i>p</i> â€aryltriazole) Foldamers. Angewandte Chemie - International Edition, 2013, 52, 11040-11044.	13.8	32
66	Selfâ€Assembled Organic Microfibers for Nonlinear Optics. Advanced Materials, 2013, 25, 2084-2089.	21.0	119
67	Postfunctionalization of Helical Polyisocyanopeptides with Phthalocyanine Chromophores by "Click Chemistryâ€ŧ ChemPlusChem, 2012, 77, 700-706.	2.8	12
68	The trisubstituted-triazole approach to extended functional naphthalocyanines. Journal of Porphyrins and Phthalocyanines, 2011, 15, 898-907.	0.8	5
69	Triazole: a unique building block for the construction of functional materials. Chemical Communications, 2011, 47, 8740.	4.1	152
70	Fusing Triazoles: Toward Extending Aromaticity. Organic Letters, 2011, 13, 3494-3497.	4.6	41
71	Triazole–pyridineligands: a novel approach to chromophoric iridium arrays. Journal of Materials Chemistry, 2011, 21, 2104-2111.	6.7	44
72	Multichromophoric Phthalocyanine–(Perylenediimide) ₈ Molecules: A Photophysical Study. Chemistry - A European Journal, 2010, 16, 10021-10029.	3.3	23

PAUL H J KOUWER

#	Article	IF	CITATIONS
73	Dynamics of molecular self-ordering in tetraphenyl porphyrin monolayers on metallic substrates. Nanotechnology, 2009, 20, 275602.	2.6	75
74	A Novel Modular Approach to Triazole-Functionalized Phthalocyanines Using Click Chemistry. Journal of Organic Chemistry, 2009, 74, 21-25.	3.2	79
75	Hierarchical organisation in shape-amphiphilic liquid crystals. Journal of Materials Chemistry, 2009, 19, 1564.	6.7	47
76	Columnar mesophases from half-discoid platinum cyclometalated metallomesogens. Journal of Materials Chemistry, 2008, 18, 400-407.	6.7	85
77	Long- and Short-Range Order in the Mesophases of Laterally Substituted Calamitic Mesogens and their Radial Octapodes. Journal of Physical Chemistry B, 2008, 112, 6550-6556.	2.6	46
78	Uniform <i>N</i> -(2-Aminoethyl)(3-aminopropyl)trimethoxysilane Monolayer Growth in Water. Journal of Physical Chemistry C, 2008, 112, 20105-20108.	3.1	14
79	Local lamellar organisation of discotic mesogens carrying fluorinated tails. Journal of Materials Chemistry, 2007, 17, 4196.	6.7	20
80	Columnar phase structures of an organic–inorganic hybrid functionalized with eight calamitic mesogens. Soft Matter, 2007, 3, 857-865.	2.7	37
81	Synthesis and Mesomorphic Properties of Rigid-Core Ionic Liquid Crystals. Journal of the American Chemical Society, 2007, 129, 14042-14052.	13.7	182
82	Shape Dependence in the Formation of Condensed Phases Exhibited by Disubstituted Sucrose Esters. Chemistry - A European Journal, 2007, 13, 1763-1775.	3.3	25
83	Self-Organizing Properties of Monosubstituted Sucrose Fatty Acid Esters: The Effects of Chain Length and Unsaturation. Chemistry - A European Journal, 2006, 12, 3547-3557.	3.3	54
84	Disc-Shaped Triphenylenes in a Smectic Organisation ChemInform, 2004, 35, no.	0.0	0
85	Discotic Multipodes with Nematic Mesophases. Molecular Crystals and Liquid Crystals, 2004, 411, 387-396.	0.9	17
86	Mixtures of disc-shaped and rod-shaped mesogens with chiral components. Journal of Materials Chemistry, 2004, 14, 1798.	6.7	11
87	Dynamics and Phase Transitions in Discotic and Calamitic Liquid Crystal Side-chain Polymers. Molecular Crystals and Liquid Crystals, 2004, 411, 503-513.	0.9	3
88	Substituent Effects in Discotic Liquid Crystals. Molecular Crystals and Liquid Crystals, 2004, 411, 305-312.	0.9	9
89	The Nematic Discotic Phase in Materials Containing a Siloxane Core. Molecular Crystals and Liquid Crystals, 2004, 411, 377-385.	0.9	9
90	Disc-shaped triphenylenes in a smectic organisation. Chemical Communications, 2004, , 66.	4.1	43

#	Article	IF	CITATIONS
91	Multiple Levels of Order in Linked Disc–Rod Liquid Crystals. Angewandte Chemie - International Edition, 2003, 42, 6015-6018.	13.8	46
92	Dynamics of discotic methoxy triphenylene molecules from quasielastic neutron scattering and molecular dynamics simulations. Chemical Physics, 2003, 292, 185-190.	1.9	11
93	Full Miscibility of Disk- and Rod-Shaped Mesogens in the Nematic Phase. Journal of the American Chemical Society, 2003, 125, 11172-11173.	13.7	82
94	Specific interactions in discotic liquid crystals. Journal of Materials Chemistry, 2003, 13, 458-469.	6.7	43
95	Dynamics of a Triphenylene Discotic Molecule, HAT6, in the Columnar and Isotropic Liquid Phases. Journal of the American Chemical Society, 2003, 125, 3860-3866.	13.7	67
96	Synthesis of Amphiphilic Phenylazophenyl Glycosides and a Study of Their Liquid Crystal Properties. Journal of the American Chemical Society, 2003, 125, 15499-15506.	13.7	52
97	A bilayer to monolayer phase transition in liquid crystal glycolipidsElectronic supplementary information (ESI) available: synthesis of compound 3. See http://www.rsc.org/suppdata/cc/b3/b308880d/. Chemical Communications, 2003, , 2860.	4.1	23
98	Nematic Phases of Disc-And Rod-Shaped Molecules. Molecular Crystals and Liquid Crystals, 2003, 397, 1-16.	0.9	10
99	NEMATIC PHASES OF DISC-AND ROD-SHAPED MOLECULES. Molecular Crystals and Liquid Crystals, 2003, 397, 1-1.	0.9	3
100	Induced Liquid Crystalline Diversity in Molecular and Polymeric Charge-Transfer Complexes of Discotic Mesogens. Macromolecules, 2002, 35, 2576-2582.	4.8	29
101	Charge Transfer Complexes of Discotic Liquid Crystals:  A Flexible Route to a Wide Variety of Mesophases. Macromolecules, 2002, 35, 4322-4329.	4.8	59
102	The Nematic Lateral Phase:Â A Novel Phase in Discotic Supramolecular Assemblies. Macromolecules, 2001, 34, 7582-7584.	4.8	36
103	Modeling of NDand NColPhase Transitions in Discotic Side Chain Polymers by the Extended McMillan Theory. Journal of the American Chemical Society, 2001, 123, 4645-4646.	13.7	11
104	Synthesis and Characterization of a Novel Liquid Crystalline Polymer Showing a Nematic Columnar to Nematic Discotic Phase Transition. Macromolecules, 2000, 33, 4336-4342.	4.8	48
105	A Novel Polyaryl Ether Based Photorefractive Composite. Chemistry of Materials, 1998, 10, 3951-3957.	6.7	8