
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/371615/publications.pdf Version: 2024-02-01

KIADA SIÃOCOEN

#	Article	IF	CITATIONS
1	Development of a synbiotic that protects against ovariectomy-induced trabecular bone loss. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E344-E354.	3.5	5
2	A probiotic mix partially protects against castration-induced bone loss in male mice. Journal of Endocrinology, 2022, 254, 91-101.	2.6	4
3	Mild stimulatory effect of a probiotic mix on bone mass when treatment is initiated 1.5 weeks after ovariectomy in mice. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E591-E597.	3.5	5
4	Acute fat loss does not affect bone mass. Scientific Reports, 2021, 11, 14177.	3.3	5
5	Phosphorylation site S122 in estrogen receptor α has a tissueâ€dependent role in female mice. FASEB Journal, 2020, 34, 15991-16002.	0.5	7
6	The effects of estradiol are modulated in a tissue-specific manner in mice with inducible inactivation of ERα after sexual maturation. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E646-E654.	3.5	4
7	Pasteurized <i>Akkermansia muciniphila</i> protects from fat mass gain but not from bone loss. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E480-E491.	3.5	27
8	Probiotic treatment using a mix of three Lactobacillus strains for lumbar spine bone loss in postmenopausal women: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet Rheumatology, The, 2019, 1, e154-e162.	3.9	78
9	The gut microbiota is a major regulator of androgen metabolism in intestinal contents. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E1182-E1192.	3.5	118
10	The androgen receptor is required for maintenance of bone mass in adult male mice. Molecular and Cellular Endocrinology, 2019, 479, 159-169.	3.2	19
11	Body weight homeostat that regulates fat mass independently of leptin in rats and mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 427-432.	7.1	74
12	Inducible Wnt16 inactivation: WNT16 regulates cortical bone thickness in adult mice. Journal of Endocrinology, 2018, 237, 113-122.	2.6	32
13	Osteomicrobiology: A New Cross-Disciplinary Research Field. Calcified Tissue International, 2018, 102, 426-432.	3.1	45
14	$ER\hat{I}\pmexpression$ in T lymphocytes is dispensable for estrogenic effects in bone. Journal of Endocrinology, 2018, 238, 129-136.	2.6	7
15	Regulation of bone mass by the gut microbiota is dependent on NOD1 and NOD2 signaling. Cellular Immunology, 2017, 317, 55-58.	3.0	58
16	Increased adipose tissue aromatase activity improves insulin sensitivity and reduces adipose tissue inflammation in male mice. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E450-E462.	3.5	39
17	Liver-derived IGF-I regulates cortical bone mass but is dispensable for the osteogenic response to mechanical loading in female mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E138-E144.	3.5	12
18	Enzalutamide Reduces the Bone Mass in the Axial But Not the Appendicular Skeleton in Male Mice. Endocrinology, 2016, 157, 969-977.	2.8	20

#	Article	IF	CITATIONS
19	Genomewide metaâ€analysis identifies loci associated with <scp>IGF</scp> â€l and <scp>IGFBP</scp> â€3 levels with impact on ageâ€related traits. Aging Cell, 2016, 15, 811-824.	6.7	83
20	SERMs have substance-specific effects on bone, and these effects are mediated via ERαAF-1 in female mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E912-E918.	3.5	20
21	Increased diet-induced fatty streak formation in female mice with deficiency of liver-derived insulin-like growth factor-I. Endocrine, 2016, 52, 550-560.	2.3	8
22	The bone-sparing effects of estrogen and WNT16 are independent of each other. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14972-14977.	7.1	50
23	Effects of the gut microbiota on bone mass. Trends in Endocrinology and Metabolism, 2015, 26, 69-74.	7.1	172
24	Probiotics Protect Mice from Ovariectomy-Induced Cortical Bone Loss. PLoS ONE, 2014, 9, e92368.	2.5	250
25	The estrogen receptor antagonist ICI 182,780 can act both as an agonist and an inverse agonist when estrogen receptor î± AF-2 is modified. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1180-1185.	7.1	40
26	Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nature Medicine, 2014, 20, 1279-1288.	30.7	303
27	Estrogen receptor-α in osteocytes is important for trabecular bone formation in male mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2294-2299.	7.1	118
28	Estrogen receptor-α is required for the osteogenic response to mechanical loading in a ligand-independent manner involving its activation function 1 but not 2. Journal of Bone and Mineral Research, 2013, 28, 291-301.	2.8	87
29	Seminal vesicles and urinary bladder as sites of aromatization of androgens in men, evidenced by a CYP19A1â€driven luciferase reporter mouse and human tissue specimens. FASEB Journal, 2013, 27, 1342-1350.	0.5	7
30	The role of activation functions 1 and 2 of estrogen receptor-α for the effects of estradiol and selective estrogen receptor modulators in male mice. Journal of Bone and Mineral Research, 2013, 28, 1117-1126.	2.8	23
31	The Role of IGF-1 for Fracture Risk in Men. Frontiers in Endocrinology, 2012, 3, 51.	3.5	5
32	The gut microbiota regulates bone mass in mice. Journal of Bone and Mineral Research, 2012, 27, 1357-1367.	2.8	585
33	Roles of transactivating functions 1 and 2 of estrogen receptor- \hat{l} ± in bone. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6288-6293.	7.1	88
34	Reduced Bone Mass and Muscle Strength in Male 5α-Reductase Type 1 Inactivated Mice. PLoS ONE, 2011, 6, e21402.	2.5	46
35	Liver-Derived IGF-I Regulates Mean Life Span in Mice. PLoS ONE, 2011, 6, e22640.	2.5	53
36	The role of estrogen receptor α in growth plate cartilage for longitudinal bone growth. Journal of Bone and Mineral Research, 2010, 25, 2690-2700.	2.8	70

#	Article	IF	CITATIONS
37	Stimulation of both estrogen and androgen receptors maintains skeletal muscle mass in gonadectomized male mice but mainly via different pathways. Journal of Molecular Endocrinology, 2010, 45, 45-57.	2.5	36
38	The Role of Liver-Derived Insulin-Like Growth Factor-I. Endocrine Reviews, 2009, 30, 494-535.	20.1	361
39	Elevated Aromatase Expression in Osteoblasts Leads to Increased Bone Mass Without Systemic Adverse Effects. Journal of Bone and Mineral Research, 2009, 24, 1263-1270.	2.8	41
40	Liver-derived IGF1 enhances the androgenic response in prostate. Journal of Endocrinology, 2008, 199, 489-497.	2.6	15
41	Growth hormone regulation of metabolic gene expression in muscle: a microarray study in hypopituitary men. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E364-E371.	3.5	47
42	Regulation of Growth Hormone Signaling by Selective Estrogen Receptor Modulators Occurs through Suppression of Protein Tyrosine Phosphatases. Endocrinology, 2007, 148, 2417-2423.	2.8	9
43	Liver-derived IGF-I regulates kidney size, sodium reabsorption, and renal IGF-II expression. Journal of Endocrinology, 2007, 193, 359-366.	2.6	17
44	Liver-derived IGF-I regulates exploratory activity in old mice. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E466-E473.	3.5	13
45	Investigation of central versus peripheral effects of estradiol in ovariectomized mice. Journal of Endocrinology, 2005, 187, 303-309.	2.6	22
46	Growth Hormone Overexpression in the Central Nervous System Results in Hyperphagia-Induced Obesity Associated With Insulin Resistance and Dyslipidemia. Diabetes, 2005, 54, 51-62.	0.6	72
47	Estrogen Up-Regulates Hepatic Expression of Suppressors of Cytokine Signaling-2 and -3 in Vivo and in Vitro. Endocrinology, 2004, 145, 5525-5531.	2.8	69
48	Liver-Derived Insulin-Like Growth Factor-I Is Involved in the Regulation of Blood Pressure in Mice. Endocrinology, 2002, 143, 4235-4242.	2.8	65
49	Effects of Liver-Derived Insulin-Like Growth Factor I on Bone Metabolism in Mice. Journal of Bone and Mineral Research, 2002, 17, 1977-1987.	2.8	90
50	A Model for Tissue-Specific Inducible Insulin-like Growth Factor-I (IGF-I) Inactivation to Determine the Physiological Role of Liver-Derived IGF-I. Endocrine, 2002, 19, 249-256.	2.2	43
51	The somatomedin hypothesis revisited in a transgenic model. Growth Hormone and IGF Research, 2001, 11, S49-S52.	1.1	3
52	Possible Roles of Insulin-Like Growth Factor in Regulation of Physiological and Pathophysiological Liver Growth. Hormone Research in Paediatrics, 2001, 55, 1-6.	1.8	8
53	Body Fat Content Can Be Predicted In Vivo in Mice Using a Modified Dual-Energy X-Ray Absorptiometry Technique. Journal of Nutrition, 2001, 131, 2963-2966.	2.9	48
54	Metabolic Functions of Liver-Derived (Endocrine) Insulin-Like Growth Factor I. Hormone Research in Paediatrics, 2001, 55, 18-21.	1.8	12

#	Article	IF	CITATIONS
55	Liver-Derived IGF-I is of Importance for Normal Carbohydrate and Lipid Metabolism. Diabetes, 2001, 50, 1539-1545.	0.6	128
56	The relative importance of endocrine versus autocrine/paracrine insulin-like growth factor-I in the regulation of body growth. Pediatric Nephrology, 2000, 14, 541-543.	1.7	46
57	Disproportional Skeletal Growth and Markedly Decreased Bone Mineral Content in Growth Hormone Receptor â^'/â^' Mice. Biochemical and Biophysical Research Communications, 2000, 267, 603-608.	2.1	111
58	Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7088-7092.	7.1	826
59	Osteoprotegerin mRNA Is Increased by Interleukin-1α in the Human Osteosarcoma Cell Line MG-63 and in Human Osteoblast-Like Cells. Biochemical and Biophysical Research Communications, 1998, 248, 696-700.	2.1	97