Stephan von Gunten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3714150/publications.pdf

Version: 2024-02-01

172457 3,418 77 29 citations h-index papers

g-index 77 77 77 3936 docs citations times ranked citing authors all docs

149698

56

#	Article	IF	CITATIONS
1	Diversification of IgA Antibody Specificities by Mild Chemical Modification?. Pharmacology, 2022, , 1-2.	2.2	1
2	Therapeutic antibody glycosylation impacts antigen recognition and immunogenicity. Immunology, 2022, 166, 380-407.	4.4	6
3	Digest the Sugar, Kill the Parasite: A New Experimental Concept in Treating Alveolar Echinococcosis. Pharmacology, 2021, 106, 3-8.	2.2	4
4	Glycan-specific IgG anti-IgE autoantibodies are protective against allergic anaphylaxis in a murine model. Journal of Allergy and Clinical Immunology, 2021, 147, 1430-1441.	2.9	11
5	Lack of IRF6 Disrupts Human Epithelial Homeostasis by Altering Colony Morphology, Migration Pattern, and Differentiation Potential of Keratinocytes. Frontiers in Cell and Developmental Biology, 2021, 9, 718066.	3.7	4
6	Targeting sialylation to treat central nervous system diseases. Trends in Pharmacological Sciences, 2021, 42, 998-1008.	8.7	15
7	Targeting the Laminated Layer of <i>Echinococcus multilocularis</i> as a Potential Therapeutic Strategy. Pharmacology, 2021, 106, 1-2.	2.2	2
8	Parallelism of intestinal secretory IgA shapes functional microbial fitness. Nature, 2021, 598, 657-661.	27.8	60
9	The Distinct Roles of Sialyltransferases in Cancer Biology and Onco-Immunology. Frontiers in Immunology, 2021, 12, 799861.	4.8	36
10	Granulocyte death mediated by specific antibodies in intravenous immunoglobulin (IVIG). Pharmacological Research, 2020, 154, 104168.	7.1	20
11	The Future of Pharmacology: Towards More Personalized Pharmacotherapy and Reverse Translational Research. Pharmacology, 2020, 105, 1-2.	2.2	13
12	IgA Triggers Cell Death of Neutrophils When Primed by Inflammatory Mediators. Journal of Immunology, 2020, 205, 2640-2648.	0.8	4
13	Human IgA binds a diverse array of commensal bacteria. Journal of Experimental Medicine, 2020, 217, .	8.5	65
14	Unique repertoire of anti-carbohydrate antibodies in individual human serum. Scientific Reports, 2020, 10, 15436.	3.3	18
15	Linking glucocorticoid-induced osteoporosis to osteoimmunology. Cell Death and Disease, 2020, 11, 1026.	6.3	1
16	Inflamm-Aging: Arginase-II as Stage Setter in Age-Related Adipose Tissue Inflammation. Pharmacology, 2020, 105, 489-490.	2.2	1
17	Xenogeneic Neu5Gc and self-glycan Neu5Ac epitopes are potential immune targets in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	6
18	Arginaseâ€II promotes melanoma migration and adhesion through enhancing hydrogen peroxide production and STAT3 signaling. Journal of Cellular Physiology, 2020, 235, 9997-10011.	4.1	20

#	Article	IF	Citations
19	Enhanced Pro-apoptotic Effects of Fe(II)-Modified IVIG on Human Neutrophils. Frontiers in Immunology, 2020, 11, 973.	4.8	4
20	Immune biomarker-based enrichment in sepsis trials. Critical Care, 2020, 24, 58.	5.8	2
21	Secondary-Type Carbohydrate Modification as a Driver of Epithelial-Mesenchymal Transition and Features of Cancer Stem Cells. Pharmacology, 2020, 105, 244-245.	2.2	0
22	Antitumor effects of the GM3(Neu5Gc) ganglioside-specific humanized antibody 14F7hT against Cmah-transfected cancer cells. Scientific Reports, 2019, 9, 9921.	3.3	23
23	Allergy and Atopic Diseases: An Update on Experimental Evidence. International Archives of Allergy and Immunology, 2019, 180, 235-243.	2.1	17
24	The architecture of the IgG anti-carbohydrate repertoire in primary antibody deficiencies. Blood, 2019, 134, 1941-1950.	1.4	19
25	Differential Recognition of Diet-Derived Neu5Gc-Neoantigens on Glycan Microarrays by Carbohydrate-Specific Pooled Human IgG and IgA Antibodies. Bioconjugate Chemistry, 2019, 30, 1565-1574.	3.6	12
26	Siglec-9 Regulates an Effector Memory CD8+ T-cell Subset That Congregates in the Melanoma Tumor Microenvironment. Cancer Immunology Research, 2019, 7, 707-718.	3.4	94
27	Targeting sialic acid–Siglec interactions to reverse immune suppression in cancer. Glycobiology, 2018, 28, 640-647.	2.5	115
28	Recent Advances in Experimental Allergy. International Archives of Allergy and Immunology, 2018, 177, 281-289.	2.1	4
29	Evaluation of Radiolabeled Girentuximab In Vitro and In Vivo. Pharmaceuticals, 2018, 11, 132.	3.8	5
30	A Cartography of Siglecs and Sialyltransferases in Gynecologic Malignancies: Is There a Road Towards a Sweet Future?. Frontiers in Oncology, 2018, 8, 68.	2.8	14
31	Basics of Immunoglobulins as Effector Molecules and Drugs. , 2018, , 133-150.		0
32	Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. Journal of Clinical Investigation, 2018, 128, 4912-4923.	8.2	214
33	Innate lymphoid cells in asthma: cannabinoids on the balance. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 839-841.	5.7	3
34	Antibody repertoire profiling with mimotope arrays. Human Vaccines and Immunotherapeutics, 2017, 13, 314-322.	3.3	18
35	IVIG regulates the survival of human but not mouse neutrophils. Scientific Reports, 2017, 7, 1296.	3.3	38
36	Isolation of Antibodies from Human Plasma, Saliva, Breast Milk, and Gastrointestinal Fluid. Methods in Molecular Biology, 2017, 1643, 23-31.	0.9	5

#	Article	IF	Citations
37	Clinical Use and Therapeutic Potential of IVIG/SCIG, Plasma-Derived IgA or IgM, and Other Alternative Immunoglobulin Preparations. Archivum Immunologiae Et Therapiae Experimentalis, 2017, 65, 215-231.	2.3	23
38	The Potential Use of Pharmacological Agents to Modulate Orthodontic Tooth Movement (OTM). Frontiers in Physiology, 2017, 8, 67.	2.8	27
39	Synchrotron microbeam irradiation induces neutrophil infiltration, thrombocyte attachment and selective vascular damage in vivo. Scientific Reports, 2016, 6, 33601.	3.3	37
40	Protection from experimental autoimmune encephalomyelitis by polyclonal IgG requires adjuvant-induced inflammation. Journal of Neuroinflammation, 2016, 13, 42.	7.2	8
41	The European Hematology Association Roadmap for European Hematology Research: a consensus document. Haematologica, 2016, 101, 115-208.	3.5	67
42	Micro <scp>RNA</scp> â€155: microtuning the allergic concert. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1035-1036.	5.7	3
43	Basophils exhibit antibacterial activity through extracellular trap formation. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1184-1188.	5.7	66
44	Intravenous Immunoglobulin with Enhanced Polyspecificity Improves Survival in Experimental Sepsis and Aseptic Systemic Inflammatory Response Syndromes. Molecular Medicine, 2015, 21, 1002-1010.	4.4	24
45	The human IgG anti-carbohydrate repertoire exhibits a universal architecture and contains specificity for microbial attachment sites. Science Translational Medicine, 2015, 7, 269ra1.	12.4	87
46	Cancer intelligence acquired (CIA): tumor glycosylation and sialylation codes dismantling antitumor defense. Cellular and Molecular Life Sciences, 2015, 72, 1231-1248.	5 . 4	99
47	Interactions between Siglec-7/9 receptors and ligands influence NK cell–dependent tumor immunosurveillance. Journal of Clinical Investigation, 2014, 124, 1810-1820.	8.2	340
48	Protein-glycan interactions as targets of intravenous/subcutaneous immunoglobulin (IVIg/SCIg) preparations. Clinical and Experimental Immunology, 2014, 178, 151-152.	2.6	4
49	IVIG pluripotency and the concept of Fc-sialylation: challenges to the scientist. Nature Reviews Immunology, 2014, 14, 349-349.	22.7	68
50	Microbial glycan microarrays define key features of host-microbial interactions. Nature Chemical Biology, 2014, 10, 470-476.	8.0	191
51	Human IgA Fc Receptor FcαRI (CD89) Triggers Different Forms of Neutrophil Death Depending on the Inflammatory Microenvironment. Journal of Immunology, 2014, 193, 5649-5659.	0.8	32
52	CD Molecules. , 2014, , 1663-1687.		0
53	Alginate-coated chitosan nanogel capacity to modulate the effect of TLR ligands on blood dendritic cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 806-817.	3.3	43
54	Cell Death in Immune Thrombocytopenia: Novel Insights and Perspectives. Seminars in Hematology, 2013, 50, S109-S115.	3.4	12

#	Article	IF	Citations
55	Mechanisms and potential therapeutic targets in allergic inflammation: recent insights. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 1487-1498.	5.7	17
56	Glycomic analysis of human mast cells, eosinophils and basophils. Glycobiology, 2012, 22, 12-22.	2.5	27
57	Update in clinical allergy and immunology. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 1491-1500.	5.7	6
58	Granulocyte Death Regulation by Naturally Occurring Autoantibodies. Advances in Experimental Medicine and Biology, 2012, 750, 157-172.	1.6	7
59	Glucocorticoids †on air'. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 144-146.	5.7	4
60	Antibodies recognising sulfated carbohydrates are prevalent in systemic sclerosis and associated with pulmonary vascular disease. Annals of the Rheumatic Diseases, 2011, 70, 2218-2224.	0.9	36
61	A Differential Concentration-Dependent Effect of IVIg on Neutrophil Functions: Relevance for Anti-Microbial and Anti-Inflammatory Mechanisms. PLoS ONE, 2011, 6, e26469.	2.5	38
62	Dimeric IVIG contains natural anti-Siglec-9 autoantibodies and their anti-idiotypes. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 1030-1037.	5.7	41
63	Targeting Siglecs—A novel pharmacological strategy for immuno- and glycotherapy. Biochemical Pharmacology, 2011, 82, 323-332.	4.4	81
64	Cell Death Modulation by Intravenous Immunoglobulin. Journal of Clinical Immunology, 2010, 30, 24-30.	3.8	81
65	Expression and Function of Siglec-8 in Human Eosinophils, Basophils, and Mast Cells. , 2009, , 297-313.		3
66	Intravenous immunoglobulin contains a broad repertoire of anticarbohydrate antibodies that is not restricted to the IgG2 subclass. Journal of Allergy and Clinical Immunology, 2009, 123, 1268-1276.e15.	2.9	89
67	DIFFERENT PATTERNS OF SIGLEC-9-MEDIATED NEUTROPHIL DEATH RESPONSES IN SEPTIC SHOCK. Shock, 2009, 32, 386-392.	2.1	23
68	Basic and Clinical Immunology of Siglecs. Annals of the New York Academy of Sciences, 2008, 1143, 61-82.	3.8	144
69	Natural anti-Siglec autoantibodies mediate potential immunoregulatory mechanisms: Implications for the clinical use of intravenous immunoglobulins (IVIg). Autoimmunity Reviews, 2008, 7, 453-456.	5.8	58
70	Inhibition of FcεRI-dependent mediator release and calcium flux from human mast cells by sialic acid–binding immunoglobulin-like lectin 8 engagement. Journal of Allergy and Clinical Immunology, 2008, 121, 499-505.e1.	2.9	144
71	Autophagic-Like Cell Death in Neutrophils Induced by Autoantibodies. Autophagy, 2007, 3, 67-68.	9.1	30
72	Intravenous immunoglobulin preparations contain anti–Siglec-8 autoantibodies. Journal of Allergy and Clinical Immunology, 2007, 119, 1005-1011.	2.9	97

STEPHAN VON GUNTEN

#	Article	IF	CITATIONS
73	Immunologic and functional evidence for anti–Siglec-9 autoantibodies in intravenous immunoglobulin preparations. Blood, 2006, 108, 4255-4259.	1.4	120
74	Sialic acid binding immunoglobulinâ€like lectins may regulate innate immune responses by modulating the life span of granulocytes. FASEB Journal, 2006, 20, 601-605.	0.5	37
75	Siglec-9 transduces apoptotic and nonapoptotic death signals into neutrophils depending on the proinflammatory cytokine environment. Blood, 2005, 106, 1423-1431.	1.4	212
76	Concurrent presence of agonistic and antagonistic anti-CD95 autoantibodies in intravenous Ig preparations. Journal of Allergy and Clinical Immunology, 2003, 112, 1185-1190.	2.9	88
77	The Interleukin-13 Production by Peripheral Blood T Cells from Atopic Dermatitis Patients Does Not Require CD2 Costimulation. International Archives of Allergy and Immunology, 2003, 132, 148-155.	2.1	30