
Craig Criddle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3712695/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ES&T Critical Reviews: Transformations of halogenated aliphatic compounds. Environmental Science & Technology, 1987, 21, 722-736.	10.0	935
2	Fluorinated Organics in the Biosphere. Environmental Science & amp; Technology, 1997, 31, 2445-2454.	10.0	650
3	GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME Journal, 2007, 1, 67-77.	9.8	554
4	Combined niche and neutral effects in a microbial wastewater treatment community. Proceedings of the United States of America, 2010, 107, 15345-15350.	7.1	504
5	Quantitative Determination of Perfluorochemicals in Sediments and Domestic Sludge. Environmental Science & Technology, 2005, 39, 3946-3956.	10.0	494
6	Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology, 2019, 4, 1183-1195.	13.3	491
7	How Stable Is Stable? Function versus Community Composition. Applied and Environmental Microbiology, 1999, 65, 3697-3704.	3.1	444
8	Three-Dimensional Carbon Nanotubeâ^'Textile Anode for High-Performance Microbial Fuel Cells. Nano Letters, 2011, 11, 291-296.	9.1	388
9	Occurrence of Ammonia-Oxidizing Archaea in Wastewater Treatment Plant Bioreactors. Applied and Environmental Microbiology, 2006, 72, 5643-5647.	3.1	347
10	Use of Reverse Osmosis Membranes to Remove Perfluorooctane Sulfonate (PFOS) from Semiconductor Wastewater. Environmental Science & Technology, 2006, 40, 7343-7349.	10.0	326
11	Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of <i>Tenebrio) Tj ETQq1 1 0.784314 6526-6533.</i>	rgBT /Ove 10.0	erlock 10 Tf 5 316
12	Effect of Flux (Transmembrane Pressure) and Membrane Properties on Fouling and Rejection of Reverse Osmosis and Nanofiltration Membranes Treating Perfluorooctane Sulfonate Containing Wastewater. Environmental Science & Technology, 2007, 41, 2008-2014.	10.0	309
13	Flexible Community Structure Correlates with Stable Community Function in Methanogenic Bioreactor Communities Perturbed by Glucose. Applied and Environmental Microbiology, 2000, 66, 4058-4067.	3.1	302
14	Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. Energy and Environmental Science, 2012, 5, 5265-5270.	30.8	284
15	Graphene–sponges as high-performance low-cost anodes for microbial fuel cells. Energy and Environmental Science, 2012, 5, 6862.	30.8	264
16	Aerobic Biotransformation and Fate of <i>N</i> -Ethyl Perfluorooctane Sulfonamidoethanol (<i>N</i> -EtFOSE) in Activated Sludge. Environmental Science & Technology, 2008, 42, 2873-2878.	10.0	253
17	Pilot-Scale in Situ Bioremedation of Uranium in a Highly Contaminated Aquifer. 2. Reduction of U(VI) and Geochemical Control of U(VI) Bioavailability. Environmental Science & Technology, 2006, 40, 3986-3995.	10.0	242
18	Ammoniaâ€oxidizing communities in a highly aerated fullâ€scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environmental Microbiology, 2009, 11, 2310-2328.	3.8	234

#	Article	IF	CITATIONS
19	Understanding Bias in Microbial Community Analysis Techniques due to <i>rrn</i> Operon Copy Number Heterogeneity. BioTechniques, 2003, 34, 790-802.	1.8	231
20	Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene, andp-xylene by twoPseudomonasisolates Biotechnology and Bioengineering, 1993, 41, 1057-1065.	3.3	224
21	Design and fabrication of bioelectrodes for microbial bioelectrochemical systems. Energy and Environmental Science, 2015, 8, 3418-3441.	30.8	223
22	Biodegradation of Polystyrene by Dark (<i>Tenebrio obscurus</i>) and Yellow (<i>Tenebrio) Tj ETQq0 0 0 rgBT /Ov 53, 5256-5265.</i>	verlock 10 10.0	Tf 50 627 T 201
23	Effect of solution chemistry on the adsorption of perfluorooctane sulfonate onto mineral surfaces. Water Research, 2010, 44, 2654-2662.	11.3	194
24	Defluorination of Organofluorine Sulfur Compounds byPseudomonasSp. Strain D2. Environmental Science & Technology, 1998, 32, 2283-2287.	10.0	192
25	In Situ Bioreduction of Uranium (VI) to Submicromolar Levels and Reoxidation by Dissolved Oxygen. Environmental Science & Technology, 2007, 41, 5716-5723.	10.0	182
26	Microplastics pollution and reduction strategies. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	6.0	180
27	Membrane fouling in an anaerobic membrane bioreactor: Differences in relative abundance of bacterial species in the membrane foulant layer and in suspension. Journal of Membrane Science, 2010, 364, 331-338.	8.2	170
28	Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 2018, 191, 979-989.	8.2	168
29	Pilot-Scale in Situ Bioremediation of Uranium in a Highly Contaminated Aquifer. 1. Conditioning of a Treatment Zone. Environmental Science & Technology, 2006, 40, 3978-3985.	10.0	160
30	The kinetics of cometabolism. Biotechnology and Bioengineering, 1993, 41, 1048-1056.	3.3	155
31	Microbial Communities in Contaminated Sediments, Associated with Bioremediation of Uranium to Submicromolar Levels. Applied and Environmental Microbiology, 2008, 74, 3718-3729.	3.1	154
32	Parallel Processing of Substrate Correlates with Greater Functional Stability in Methanogenic Bioreactor Communities Perturbed by Glucose. Applied and Environmental Microbiology, 2000, 66, 4050-4057.	3.1	151
33	Cometabolism of Cr(VI) byShewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnology and Bioengineering, 2003, 83, 627-637.	3.3	151
34	Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions. Applied and Environmental Microbiology, 1990, 56, 3240-3246.	3.1	142
35	Global Transcriptional Profiling of Shewanella oneidensis MR-1 during Cr(VI) and U(VI) Reduction. Applied and Environmental Microbiology, 2005, 71, 7453-7460.	3.1	139
36	Addressing the Issue of Microplastics in the Wake of the Microbead-Free Waters Act—A New Standard Can Facilitate Improved Policy. Environmental Science & Technology, 2017, 51, 6611-6617.	10.0	138

#	Article	lF	CITATIONS
37	Fine-scale bacterial community dynamics and the taxa–time relationship within a full-scale activated sludge bioreactor. Water Research, 2011, 45, 5476-5488.	11.3	136
38	Bioreduction of Uranium in a Contaminated Soil Column. Environmental Science & Technology, 2005, 39, 4841-4847.	10.0	133
39	Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Chemosphere, 2018, 212, 262-271.	8.2	130
40	Thermodynamic Constraints on the Oxidation of Biogenic UO2by Fe(III) (Hydr)oxides. Environmental Science & Technology, 2006, 40, 3544-3550.	10.0	129
41	Biodegradation of Polyvinyl Chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environment International, 2020, 145, 106106.	10.0	129
42	Electrolytic model system for reductive dehalogenation in aqueous environments. Environmental Science & Technology, 1991, 25, 973-978.	10.0	121
43	Distribution and Selection of Poly-3-Hydroxybutyrate Production Capacity in Methanotrophic Proteobacteria. Microbial Ecology, 2011, 62, 564-573.	2.8	115
44	Poly-3-Hydroxybutyrate Metabolism in the Type II Methanotroph Methylocystis parvus OBBP. Applied and Environmental Microbiology, 2011, 77, 6012-6019.	3.1	114
45	Nitrogen removal with energy recovery through N ₂ O decomposition. Energy and Environmental Science, 2013, 6, 241-248.	30.8	114
46	A Limited Microbial Consortium Is Responsible for Extended Bioreduction of Uranium in a Contaminated Aquifer. Applied and Environmental Microbiology, 2011, 77, 5955-5965.	3.1	108
47	Speciation of Uranium in Sediments before and after In situ Biostimulation. Environmental Science & Technology, 2008, 42, 1558-1564.	10.0	107
48	Cradle-to-Gate Life Cycle Assessment for a Cradle-to-Cradle Cycle: Biogas-to-Bioplastic (and Back). Environmental Science & Technology, 2012, 46, 9822-9829.	10.0	104
49	Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach. Applied and Environmental Microbiology, 2010, 76, 6778-6786.	3.1	102
50	Stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP. Bioresource Technology, 2013, 132, 71-77.	9.6	102
51	Effects of Nitrate on the Stability of Uranium in a Bioreduced Region of the Subsurface. Environmental Science & Technology, 2010, 44, 5104-5111.	10.0	100
52	Responses of microbial community functional structures to pilot-scale uranium <i>in situ</i> bioremediation. ISME Journal, 2010, 4, 1060-1070.	9.8	98
53	Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. Environmental Pollution, 2020, 266, 115206.	7.5	98
54	GeoChipâ€based analysis of functional microbial communities during the reoxidation of a bioreduced uraniumâ€contaminated aquifer. Environmental Microbiology, 2009, 11, 2611-2626.	3.8	95

#	Article	IF	CITATIONS
55	Occurrence of ammonia-oxidizing Archaea in activated sludges of a laboratory scale reactor and two wastewater treatment plants. Journal of Applied Microbiology, 2009, 107, 970-977.	3.1	91
56	Impacts on microbial communities and cultivable isolates from groundwater contaminated with high levels of nitric acid–uranium waste. FEMS Microbiology Ecology, 2005, 53, 417-428.	2.7	90
57	Bacterial community succession during <i>in situ</i> uranium bioremediation: spatial similarities along controlled flow paths. ISME Journal, 2009, 3, 47-64.	9.8	90
58	Production of Nitrous Oxide From Anaerobic Digester Centrate and Its Use as a Co-oxidant of Biogas to Enhance Energy Recovery. Environmental Science & Technology, 2014, 48, 5612-5619.	10.0	87
59	Pilot-Scale Evaluation of Bioaugmentation for In-Situ Remediation of a Carbon Tetrachloride-Contaminated Aquifer. Environmental Science & Technology, 1998, 32, 3598-3611.	10.0	85
60	Reductive dehalogenation of carbon tetrachloride by Escherichia coli K-12. Applied and Environmental Microbiology, 1990, 56, 3247-3254.	3.1	82
61	In Situ Bioremediation of Uranium with Emulsified Vegetable Oil as the Electron Donor. Environmental Science & Technology, 2013, 47, 6440-6448.	10.0	81
62	Recovery of Freshwater from Wastewater: Upgrading Process Configurations To Maximize Energy Recovery and Minimize Residuals. Environmental Science & Technology, 2014, 48, 8420-8432.	10.0	80
63	Long-term cultivation of a stable Methylocystis -dominated methanotrophic enrichment enabling tailored production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Bioresource Technology, 2015, 198, 811-818.	9.6	79
64	Enhanced Bioavailability and Microbial Biodegradation of Polystyrene in an Enrichment Derived from the Gut Microbiome of <i>Tenebrio molitor</i> (Mealworm Larvae). Environmental Science & Technology, 2021, 55, 2027-2036.	10.0	76
65	Magnetically ultraresponsive nanoscavengers for next-generation water purification systems. Nature Communications, 2013, 4, 1866.	12.8	74
66	Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells. Energy and Environmental Science, 2011, 4, 1293.	30.8	72
67	Reduction of Uranium(VI) by Soluble Iron(II) Conforms with Thermodynamic Predictions. Environmental Science & Technology, 2011, 45, 4718-4725.	10.0	70
68	Use of atomic force microscopy and fractal geometry to characterize the roughness of nano-, micro-, and ultrafiltration membranes. Journal of Membrane Science, 2009, 340, 117-132.	8.2	69
69	Microbial battery for efficient energy recovery. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15925-15930.	7.1	67
70	Use of low cost and easily regenerated Prussian Blue cathodes for efficient electrical energy recovery in a microbial battery. Energy and Environmental Science, 2015, 8, 546-551.	30.8	63
71	Development, Operation, and Long-Term Performance of a Full-Scale Biocurtain Utilizing Bioaugmentation. Environmental Science & Technology, 2002, 36, 3635-3644.	10.0	62
72	Selection of Type I and Type II methanotrophic proteobacteria in a fluidized bed reactor under non-sterile conditions. Bioresource Technology, 2011, 102, 9919-9926.	9.6	60

#	Article	IF	CITATIONS
73	Performance of a mixing entropy battery alternately flushed with wastewater effluent and seawater for recovery of salinity-gradient energy. Energy and Environmental Science, 2014, 7, 2295-2300.	30.8	56
74	Heterogeneous response to biostimulation for U(VI) reduction in replicated sediment microcosms. Biodegradation, 2006, 17, 303-316.	3.0	55
75	Community analysis of ammonia-oxidizing bacteria in activated sludge of eight wastewater treatment systems. Journal of Environmental Sciences, 2010, 22, 627-634.	6.1	55
76	Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of omega-hydroxyalkanoate co-substrates. AMB Express, 2017, 7, 118.	3.0	55
77	Effects of medium and trace metals on kinetics of carbon tetrachloride transformation by Pseudomonas sp. strain KC. Applied and Environmental Microbiology, 1993, 59, 2126-2131.	3.1	55
78	Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria. Journal of Contaminant Hydrology, 2007, 92, 129-148.	3.3	54
79	Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition. Applied Microbiology and Biotechnology, 2007, 77, 713-721.	3.6	54
80	Microbes and Climate Change: a Research Prospectus for the Future. MBio, 2022, 13, e0080022.	4.1	53
81	Motility-Enhanced Bioremediation of Carbon Tetrachloride-Contaminated Aquifer Sediments. Environmental Science & Technology, 1999, 33, 2958-2964.	10.0	52
82	Detection and Quantification of <i>Geobacter lovleyi</i> Strain SZ: Implications for Bioremediation at Tetrachloroethene- and Uranium-Impacted Sites. Applied and Environmental Microbiology, 2007, 73, 6898-6904.	3.1	52
83	Localization and Characterization of the Carbon Tetrachloride Transformation Activity of Pseudomonas sp. Strain KC. Applied and Environmental Microbiology, 1995, 61, 758-762.	3.1	52
84	A Nested-Cell Approach for In Situ Remediation. Ground Water, 2006, 44, 266-274.	1.3	51
85	Dynamics of Microbial Community Composition and Function during In Situ Bioremediation of a Uranium-Contaminated Aquifer. Applied and Environmental Microbiology, 2011, 77, 3860-3869.	3.1	51
86	Cyclic, alternating methane and nitrogen limitation increases PHB production in a methanotrophic community. Bioresource Technology, 2012, 107, 385-392.	9.6	51
87	Microbial biogeography across a full-scale wastewater treatment plant transect: evidence for immigration between coupled processes. Applied Microbiology and Biotechnology, 2014, 98, 4723-4736.	3.6	51
88	Optimization of Methanotrophic Growth and Production of Poly(3-Hydroxybutyrate) in a High-Throughput Microbioreactor System. Applied and Environmental Microbiology, 2015, 81, 4767-4773.	3.1	51
89	Effects of a long-term periodic substrate perturbation on an anaerobic community. Water Research, 1997, 31, 2195-2204.	11.3	50
90	Correlation of Functional Instability and Community Dynamics in Denitrifying Dispersed-Growth Reactors. Applied and Environmental Microbiology, 2007, 73, 680-690.	3.1	49

#	Article	IF	CITATIONS
91	Reassessing authorship of the Book of Mormon using delta and nearest shrunken centroid classification. Literary and Linguistic Computing, 2008, 23, 465-491.	0.6	49
92	Methane or methanol-oxidation dependent synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by obligate type II methanotrophs. Process Biochemistry, 2016, 51, 561-567.	3.7	49
93	Experimental evaluation of a model for cometabolism: Prediction of simultaneous degradation of trichloroethylene and methane by a methanotrophic mixed culture. , 1997, 56, 492-501.		47
94	Biotransformation of HCFC-22, HCFC-142b, HCFC-123, and HFC-134a by methanotrophic mixed culture MM1. Biodegradation, 1995, 6, 1-9.	3.0	46
95	Correspondence between Community Structure and Function during Succession in Phenol- and Phenol-plus-Trichloroethene-Fed Sequencing Batch Reactors. Applied and Environmental Microbiology, 2004, 70, 4950-4960.	3.1	46
96	SARS-CoV-2 RNA is enriched by orders of magnitude in primary settled solids relative to liquid wastewater at publicly owned treatment works. Environmental Science: Water Research and Technology, 2022, 8, 757-770.	2.4	46
97	Changes in bacterial community structure correlate with initial operating conditions of a field-scale denitrifying fluidized bed reactor. Applied Microbiology and Biotechnology, 2006, 71, 748-760.	3.6	44
98	Uranium Transformations in Static Microcosms. Environmental Science & Technology, 2010, 44, 236-242.	10.0	44
99	Phylogenetic and Functional Biomakers as Indicators of Bacterial Community Responses to Mixed-Waste Contamination. Environmental Science & Technology, 2006, 40, 2601-2607.	10.0	43
100	Assessing the Scale of Resource Recovery for Centralized and Satellite Wastewater Treatment. Environmental Science & Technology, 2013, 47, 10762-10770.	10.0	43
101	Disassembly and reassembly of polyhydroxyalkanoates: Recycling through abiotic depolymerization and biotic repolymerization. Bioresource Technology, 2014, 170, 167-174.	9.6	39
102	Production of Nitrous Oxide from Nitrite in Stable Type II Methanotrophic Enrichments. Environmental Science & Technology, 2015, 49, 10969-10975.	10.0	39
103	Engineering the Dark Food Chain. Environmental Science & amp; Technology, 2019, 53, 2273-2287.	10.0	38
104	Characterization of biodegradation of plastics in insect larvae. Methods in Enzymology, 2021, 648, 95-120.	1.0	38
105	Bacterial Community Shift and Coexisting/Coexcluding Patterns Revealed by Network Analysis in a Uranium-Contaminated Site after Bioreduction Followed by Reoxidation. Applied and Environmental Microbiology, 2018, 84, .	3.1	37
106	Mass-Transfer Limitations for Nitrate Removal in a Uranium-Contaminated Aquifer. Environmental Science & Technology, 2005, 39, 8453-8459.	10.0	36
107	Correlation of patterns of denitrification instability in replicated bioreactor communities with shifts in the relative abundance and the denitrification patterns of specific populations. ISME Journal, 2007, 1, 714-728.	9.8	36
108	Anaerobic biodegradation of the microbial copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate): Effects of comonomer content, processing history, and semi-crystalline morphology. Polymer, 2011, 52, 547-556.	3.8	36

#	Article	IF	CITATIONS
109	Reduction of hexachloroethane to tetrachloroethylene in groundwater. Journal of Contaminant Hydrology, 1986, 1, 133-142.	3.3	35
110	Stability in a Denitrifying Fluidized Bed Reactor. Microbial Ecology, 2006, 52, 311-321.	2.8	35
111	Low energy emulsion-based fermentation enabling accelerated methane mass transfer and growth of poly(3-hydroxybutyrate)-accumulating methanotrophs. Bioresource Technology, 2016, 207, 302-307.	9.6	35
112	The impact of fermentative organisms on carbon flow in methanogenic systems under constant low-substrate conditions. Applied Microbiology and Biotechnology, 2001, 56, 531-538.	3.6	33
113	Simulation of microbial transport and carbon tetrachloride biodegradation in intermittently-fed aquifer columns. Water Resources Research, 2002, 38, 4-1-4-13.	4.2	30
114	A derivative of the menaquinone precursor 1,4-dihydroxy-2-naphthoate is involved in the reductive transformation of carbon tetrachloride by aerobically grown Shewanella oneidensis MR-1. Applied Microbiology and Biotechnology, 2004, 63, 571-577.	3.6	30
115	A parametric transfer function methodology for analyzing reactive transport in nonuniform flow. Journal of Contaminant Hydrology, 2006, 83, 27-41.	3.3	30
116	Growth and cometabolic reduction kinetics of a uranium―and sulfateâ€reducing <i>Desulfovibrio</i> /Clostridia mixed culture: Temperature effects. Biotechnology and Bioengineering, 2008, 99, 1107-1119.	3.3	30
117	Towards a Biomanufactory on Mars. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	30
118	Generation and initial characterization of Pseudomonas stutzeri KC mutants with impaired ability to degrade carbon tetrachloride. Archives of Microbiology, 1999, 171, 424-429.	2.2	29
119	Uranium reduction and resistance to reoxidation under iron-reducing and sulfate-reducing conditions. Water Research, 2009, 43, 4652-4664.	11.3	29
120	Assessment of models for anaerobic biodegradation of a model bioplastic: Poly(hydroxybutyrate-co-hydroxyvalerate). Bioresource Technology, 2017, 227, 205-213.	9.6	29
121	Bench-Scale Evaluation of Bioaugmentation to Remediate Carbon Tetrachloride-Contaminated Aquifer Materials. Ground Water, 1996, 34, 358-367.	1.3	28
122	Hydraulic performance analysis of a multiple injection–extraction well system. Journal of Hydrology, 2007, 336, 294-302.	5.4	28
123	Wildfire prevention through prophylactic treatment of high-risk landscapes using viscoelastic retardant fluids. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20820-20827.	7.1	27
124	Fate of Hexabromocyclododecane (HBCD), A Common Flame Retardant, In Polystyrene-Degrading Mealworms: Elevated HBCD Levels in Egested Polymer but No Bioaccumulation. Environmental Science & Technology, 2020, 54, 364-371.	10.0	27
125	Enhancing the Nanomaterial Bio-Interface by Addition of Mesoscale Secondary Features: Crinkling of Carbon Nanotube Films To Create Subcellular Ridges. ACS Nano, 2014, 8, 11958-11965.	14.6	26
126	Can microbially-generated hydrogen sulfide account for the rates of U(VI) reduction by a sulfate-reducing bacterium?. Biodegradation, 2010, 21, 81-95.	3.0	25

#	Article	IF	CITATIONS
127	Can biotechnology turn the tide on plastics?. Current Opinion in Biotechnology, 2019, 57, 160-166.	6.6	25
128	Membrane and Fluid Contactors for Safe and Efficient Methane Delivery in Methanotrophic Bioreactors. Journal of Environmental Engineering, ASCE, 2020, 146, .	1.4	25
129	Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained <i>In Situ</i> U(VI) Reduction. Applied and Environmental Microbiology, 2015, 81, 4164-4172.	3.1	24
130	Microbial Processes in Porous Media. , 1991, , 639-691.		24
131	Uranium (VI) Reduction by Denitrifying Biomass. Bioremediation Journal, 2005, 9, 49-61.	2.0	23
132	Microbial communities biostimulated by ethanol during uranium (VI) bioremediation in contaminated sediment as shown by stable isotope probing. Frontiers of Environmental Science and Engineering, 2015, 9, 453-464.	6.0	22
133	Biocomposite Fiber-Matrix Treatments that Enhance In-Service Performance Can Also Accelerate End-of-Life Fragmentation and Anaerobic Biodegradation to Methane. Journal of Polymers and the Environment, 2018, 26, 1715-1726.	5.0	22
134	Nitrogen removal as nitrous oxide for energy recovery: Increased process stability and high nitrous yields at short hydraulic residence times. Water Research, 2020, 173, 115575.	11.3	22
135	Optimization of reverse osmosis operational conditions to maximize ammonia removal from the effluent of an anaerobic membrane bioreactor. Environmental Science: Water Research and Technology, 2021, 7, 739-747.	2.4	22
136	Charge-Free Mixing Entropy Battery Enabled by Low-Cost Electrode Materials. ACS Omega, 2019, 4, 11785-11790.	3.5	21
137	Temperate climate energy-positive anaerobic secondary treatment of domestic wastewater at pilot-scale. Water Research, 2021, 204, 117598.	11.3	21
138	Effects of phenol feeding pattern on microbial community structure and cometabolism of trichloroethylene. Applied and Environmental Microbiology, 1996, 62, 2953-2960.	3.1	21
139	Inhibition of a U(VI)- and Sulfate-Reducing Consortia by U(VI). Environmental Science & Technology, 2007, 41, 6528-6533.	10.0	20
140	A proposed nomenclature for biological processes that remove nitrogen. Environmental Science: Water Research and Technology, 2017, 3, 10-17.	2.4	20
141	Clues to membrane fouling hidden within the microbial communities of membrane bioreactors. Environmental Science: Water Research and Technology, 2019, 5, 1389-1399.	2.4	20
142	Mass transfer and temperature effects on substrate utilization in brewery granules. Biotechnology and Bioengineering, 1995, 46, 465-475.	3.3	19
143	Kinetic analysis and modeling of oleate and ethanol stimulated uranium (VI) bio-reduction in contaminated sediments under sulfate reduction conditions. Journal of Hazardous Materials, 2010, 183, 482-489.	12.4	19
144	Microbial Battery Powered Enzymatic Electrosynthesis for Carbon Capture and Generation of Hydrogen and Formate from Dilute Organics. ACS Energy Letters, 2019, 4, 2929-2936.	17.4	18

#	Article	IF	CITATIONS
145	More than a fertilizer: wastewater-derived struvite as a high value, sustainable fire retardant. Green Chemistry, 2021, 23, 4510-4523.	9.0	18
146	Progresses in Polystyrene Biodegradation and Prospects for Solutions to Plastic Waste Pollution. IOP Conference Series: Earth and Environmental Science, 2018, 150, 012005.	0.3	17
147	Recovery of Clean Water and Ammonia from Domestic Wastewater: Impacts on Embodied Energy and Greenhouse Gas Emissions. Environmental Science & Technology, 2022, 56, 8712-8721.	10.0	17
148	Impacts of nitrogen-containing coagulants on the nitritation/denitrification of anaerobic digester centrate. Environmental Science: Water Research and Technology, 2020, 6, 3451-3459.	2.4	16
149	Anaerobic membrane bioreactor model for design and prediction of domestic wastewater treatment process performance. Chemical Engineering Journal, 2021, 426, 131912.	12.7	16
150	Analysis of regulatory elements and genes required for carbon tetrachloride degradation in Pseudomonas stutzeri strain KC. Journal of Molecular Microbiology and Biotechnology, 2002, 4, 151-61.	1.0	16
151	Decision support toolkit for integrated analysis and design of reclaimed water infrastructure. Water Research, 2018, 134, 234-252.	11.3	15
152	The effects of particle clustering on hindered settling in high-concentration particle suspensions. Journal of Fluid Mechanics, 2021, 920, .	3.4	15
153	Use of Bioaugmentation for Continuous Removal of Carbon Tetrachloride in Model Aquifer Columns. Environmental Engineering Science, 1999, 16, 475-485.	1.6	14
154	Poly(hydroxyalkanoate)s from Waste Biomass: A Combined Chemical–Biological Approach. ChemistrySelect, 2016, 1, 2327-2331.	1.5	14
155	Simple menaquinones reduce carbon tetrachloride and iron (III). Biodegradation, 2009, 20, 109-116.	3.0	13
156	Methodology to assess end-of-life anaerobic biodegradation kinetics and methane production potential for composite materials. Composites Part A: Applied Science and Manufacturing, 2017, 95, 388-399.	7.6	12
157	Competing flow and collision effects in a monodispersed liquid–solid fluidized bed at a moderate Archimedes number. Journal of Fluid Mechanics, 2021, 927, .	3.4	12
158	Displacing fishmeal with protein derived from stranded methane. Nature Sustainability, 2022, 5, 47-56.	23.7	12
159	Gene capture and random amplification for quantitative recovery of homologous genes. Molecular and Cellular Probes, 2007, 21, 140-147.	2.1	11
160	An integrated planning tool for design of recycled water distribution networks. Environmental Modelling and Software, 2016, 84, 311-325.	4.5	11
161	Optimizing Nitrogen Fixation and Recycling for Food Production in Regenerative Life Support Systems. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	11
162	Space bioprocess engineering on the horizon. , 2022, 1, .		11

#	Article	IF	CITATIONS
163	Use of on-site bioreactors to estimate the biotransformation rate of N-ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE) during activated sludge treatment. Chemosphere, 2013, 92, 702-707.	8.2	10
164	Uranium sequestration in sediment at an iron-rich contaminated site at Oak Ridge, Tennessee via. bioreduction followed by reoxidation. Journal of Environmental Sciences, 2019, 85, 156-167.	6.1	10
165	Niche Differentiation among Three Closely Related <i>Competibacteraceae</i> Clades at a Full-Scale Activated Sludge Wastewater Treatment Plant and Putative Linkages to Process Performance. Applied and Environmental Microbiology, 2019, 85, .	3.1	9
166	Retrospective on microbial transformations of halogenated organics. Environmental Sciences: Processes and Impacts, 2020, 22, 512-517.	3.5	9
167	Robust Nitritation of Anaerobic Digester Centrate Using Dual Stressors and Timed Alkali Additions. Environmental Science & Technology, 2021, 55, 2016-2026.	10.0	9
168	Sulfate Requirement for the Growth of U(VI)-Reducing Bacteria in an Ethanol-Fed Enrichment. Bioremediation Journal, 2007, 11, 21-32.	2.0	8
169	Surge block method for controlling well clogging and sampling sediment during bioremediation. Water Research, 2013, 47, 6566-6573.	11.3	8
170	Adaptation of nitrifying microbial biomass to nickel in batch incubations. Applied Microbiology and Biotechnology, 2013, 97, 847-857.	3.6	7
171	Use of an intermediate solid-state electrode to enable efficient hydrogen production from dilute organic matter. Nano Energy, 2017, 39, 499-505.	16.0	7
172	In Vivo Polymerization ("Hard-Wiringâ€) of Bioanodes Enables Rapid Start-Up and Order-of-Magnitude Higher Power Density in a Microbial Battery. Environmental Science & Technology, 2020, 54, 14732-14739.	10.0	7
173	Metabolism and cometabolism of halogenated C-1 and C-2 hydrocarbons. Progress in Industrial Microbiology, 1995, 32, 65-102.	0.0	6
174	Estimating first-order reaction rate coefficient for transport with nonequilibrium linear mass transfer in heterogeneous media. Journal of Contaminant Hydrology, 2008, 98, 50-60.	3.3	6
175	Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework. Ground Water, 2011, 49, 209-218.	1.3	6
176	Comparison of the properties of segregated layers in a bidispersed fluidized bed to those of a monodispersed fluidized bed. Physical Review Fluids, 2021, 6, .	2.5	6
177	CFD-accelerated bioreactor optimization: reducing the hydrodynamic parameter space. Environmental Science: Water Research and Technology, 2022, 8, 456-464.	2.4	6
178	Estimating kinetic mass transfer by resting-period measurements in flow-interruption tracer tests. Journal of Contaminant Hydrology, 2010, 117, 37-45.	3.3	4
179	Dynamics of Microbial Community Composition and Function duringIn SituBioremediation of a Uranium-Contaminated Aquifer. Applied and Environmental Microbiology, 2011, 77, 5063-5063.	3.1	4
180	Community members in activated sludge as determined by molecular probe technology. Water Research, 2020, 168, 115104.	11.3	4

#	Article	IF	CITATIONS
181	Chemical and Biological Processes: The Need for Mixing. SERDP and ESTCP Remediation Technology Monograph Series, 2012, , 7-52.	0.3	4
182	Particleâ€resolved simulations of fourâ€way coupled, polydispersed, particleâ€laden flows. International Journal for Numerical Methods in Fluids, 2022, 94, 1810-1840.	1.6	4
183	Biocurtain Design Using Reactive Transport Models. Ground Water Monitoring and Remediation, 2002, 22, 113-123.	0.8	3
184	High-Quality Draft Genome Sequence of Desulfovibrio carbinoliphilus FW-101-2B, an Organic Acid-Oxidizing Sulfate-Reducing Bacterium Isolated from Uranium(VI)-Contaminated Groundwater. Genome Announcements, 2015, 3, .	0.8	3
185	Complex organic particulate artificial sewage (COPAS) as surrogate wastewater in anaerobic assays. Environmental Science: Water Research and Technology, 2019, 5, 1661-1671.	2.4	3
186	Sidestream Treatment with Energy Recovery from Nitrogen Waste: The Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO). Proceedings of the Water Environment Federation, 2014, 2014, 1114-1125.	0.0	2
187	Metabolic model of nitrite reduction to nitrous oxide coupled to alternating consumption and storage of glycogen and polyhydroxyalkanoate. Bioresource Technology Reports, 2020, 9, 100370.	2.7	2
188	Bioengineering for the In Situ Remediation of Metals. , 2005, , 493-520.		2
189	Phylogenetic diversity of NO reductases, new tools for nor monitoring, and insights into N2O production in natural and engineered environments. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	6.0	2
190	Harnessing salinity gradient energy in coastal stormwater runoff to reduce pathogen loading. Environmental Science: Water Research and Technology, 2020, 6, 1553-1558.	2.4	1
191	Integrated Design and Optimization of Water-Energy Nexus: Combining Wastewater Treatment and Energy System. Frontiers in Sustainable Cities, 2022, 4, .	2.4	1
192	Bioaugmentation with Pseudomonas Stutzeri KC for Carbon Tetrachloride Remediation. , 2013, , 257-288.		0
193	Reply to SantÃn et al.: Viscoelastic retardant fluids enable treatments to prevent wildfire on landscapes subject to routine ignitions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5105-5106.	7.1	0