Marc Lavertu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3712447/publications.pdf

Version: 2024-02-01

26 1,881 1 papers citations h-ir

16 24
h-index g-index

26 26 docs citations

26 times ranked 2628 citing authors

#	Article	IF	CITATIONS
1	Chitosan-platelet-rich plasma implants improve rotator cuff repair in a large animal model: Pilot study. Journal of Biomaterials Applications, 2022, 37, 183-194.	1.2	1
2	Purification and Surface Modification of Chitosan-based Polyplexes Using Tangential Flow Filtration and Coating by Hyaluronic Acid. Journal of Pharmaceutical Sciences, 2022, 111, 2857-2866.	1.6	0
3	Poly(2-Propylacrylic Acid) Increases In Vitro Bioactivity of Chitosan/mRNA Nanoparticles. Journal of Pharmaceutical Sciences, 2021, 110, 3439-3449.	1.6	7
4	Robust Segmentation-Free Algorithm for Homogeneity Quantification in Images. IEEE Transactions on Image Processing, 2021, 30, 5533-5544.	6.0	2
5	Chitosan–Platelet-Rich Plasma Implants Improve Rotator Cuff Repair in a Large Animal Model: Pivotal Study. Pharmaceutics, 2021, 13, 1955.	2.0	2
6	Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges, and Opportunities. Vaccines, 2021, 9, 1490.	2.1	48
7	Efficiency of Chitosan/Hyaluronan-Based mRNA Delivery Systems InÂVitro: Influence of Composition and Structure. Journal of Pharmaceutical Sciences, 2020, 109, 1581-1593.	1.6	25
8	A novel image analysis algorithm reveals that media conditioned with chitosan and platelet-rich plasma biomaterial dose dependently increases fibroblast migration in a scratch assay. Biomedical Physics and Engineering Express, 2020, 6, 065021.	0.6	0
9	Multiple platelet-rich plasma preparations can solubilize freeze-dried chitosan formulations to form injectable implants for orthopedic indications. Bio-Medical Materials and Engineering, 2019, 30, 349-364.	0.4	2
10	Injectable chitosan-platelet-rich plasma implants to promote tissue regeneration: <i>in vitro</i> properties, <i>in vivo</i> residence, degradation, cell recruitment and vascularization. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 217-228.	1.3	21
11	Lyophilisation and concentration of chitosan/siRNA polyplexes: Influence of buffer composition, oligonucleotide sequence, and hyaluronic acid coating. Journal of Colloid and Interface Science, 2018, 512, 335-345.	5 . O	34
12	siRNA Delivery with Chitosan: Influence of Chitosan Molecular Weight, Degree of Deacetylation, and Amine to Phosphate Ratio on in Vitro Silencing Efficiency, Hemocompatibility, Biodistribution, and in Vivo Efficacy. Biomacromolecules, 2018, 19, 112-131.	2.6	91
13	Automated in-line mixing system for large scale production of chitosan-based polyplexes. Journal of Colloid and Interface Science, 2017, 500, 253-263.	5.0	15
14	Regioselective chitosan end-group activation: the triskelion approach. RSC Advances, 2017, 7, 18628-18638.	1.7	4
15	Stability and binding affinity of DNA/chitosan complexes by polyanion competition. Carbohydrate Polymers, 2017, 176, 167-176.	5.1	27
16	Preparation of Concentrated Chitosan/DNA Nanoparticle Formulations by Lyophilization for Gene Delivery at Clinically Relevant Dosages. Journal of Pharmaceutical Sciences, 2016, 105, 88-96.	1.6	27
17	Regioselective thioacetylation of chitosan end-groups for nanoparticle gene delivery systems. Chemical Science, 2015, 6, 4650-4664.	3.7	13
18	Combined Analysis of Polycation/ODN Polyplexes by Analytical Ultracentrifugation and Dynamic Light Scattering Reveals their Size, Refractive Index Increment, Stoichiometry, Porosity, and Molecular Weight. Biomacromolecules, 2014, 15, 940-947.	2.6	21

#	Article	IF	CITATION
19	Chitosans for delivery of nucleic acids. Advanced Drug Delivery Reviews, 2013, 65, 1234-1270.	6.6	185
20	Kinetics and efficiency of chitosan reacetylation. Carbohydrate Polymers, 2012, 87, 1192-1198.	5.1	40
21	Excess polycation mediates efficient chitosan-based gene transfer by promoting lysosomal release of the polyplexes. Biomaterials, 2011, 32, 4639-4646.	5.7	76
22	Precise derivatization of structurally distinct chitosans with rhodamine B isothiocyanate. Carbohydrate Polymers, 2008, 72, 616-624.	5.1	66
23	Heat-Induced Transfer of Protons from Chitosan to Glycerol Phosphate Produces Chitosan Precipitation and Gelation. Biomacromolecules, 2008, 9, 640-650.	2.6	108
24	Ionization and Solubility of Chitosan Solutions Related to Thermosensitive Chitosan/Glycerol-Phosphate Systems. Biomacromolecules, 2007, 8, 3224-3234.	2.6	123
25	High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials, 2006, 27, 4815-4824.	5.7	407
26	A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. Journal of Pharmaceutical and Biomedical Analysis, 2003, 32, 1149-1158.	1.4	536