
## Baptiste Auguié

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3712093/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Orientation dependence of optical activity in light scattering by nanoparticle clusters. Materials<br>Advances, 2022, 3, 1547-1555.                                                                                                                  | 5.4  | 4         |
| 2  | Comparison of dynamic corrections to the quasistatic polarizability and optical properties of small spheroidal particles. Journal of Chemical Physics, 2022, 156, 104110.                                                                            | 3.0  | 4         |
| 3  | Effect of Molecular Position and Orientation on Adsorbate-Induced Shifts of Plasmon Resonances.<br>Journal of Physical Chemistry C, 2022, 126, 10129-10138.                                                                                          | 3.1  | 4         |
| 4  | Tailoring Plasmonic Bimetallic Nanocatalysts Toward Sunlightâ€Driven H <sub>2</sub> Production.<br>Advanced Functional Materials, 2022, 32, .                                                                                                        | 14.9 | 33        |
| 5  | Incorporation of porous protective layers as a strategy to improve mechanical stability of Tamm plasmon based detectors. Materials Advances, 2021, 2, 2719-2729.                                                                                     | 5.4  | 6         |
| 6  | Refined effective-medium model for the optical properties of nanoparticles coated with anisotropic molecules. Physical Review B, 2021, 103, .                                                                                                        | 3.2  | 6         |
| 7  | Orientation averaging of optical chirality near nanoparticles and aggregates. Physical Review B, 2021, 103, .                                                                                                                                        | 3.2  | 8         |
| 8  | Thin-shell approximation of Mie theory for a thin anisotropic layer spaced away from a spherical core:<br>Application to dye-coated nanostructures. Physical Review A, 2021, 104, .                                                                  | 2.5  | 5         |
| 9  | Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.                                                                                                                                                                 | 14.6 | 2,153     |
| 10 | Core–Shell Bimetallic Nanoparticle Trimers for Efficient Light-to-Chemical Energy Conversion. ACS<br>Energy Letters, 2020, 5, 3881-3890.                                                                                                             | 17.4 | 37        |
| 11 | Combined Extinction and Absorption UV–Visible Spectroscopy as a Method for Revealing Shape<br>Imperfections of Metallic Nanoparticles. Analytical Chemistry, 2019, 91, 14639-14648.                                                                  | 6.5  | 26        |
| 12 | Development of a Surface-Plasmon Resonance Sensor Testbed for Bimetallic Sensors. , 2019, , .                                                                                                                                                        |      | 1         |
| 13 | Approximate <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mi>T</mml:mi> matrix and<br/>optical properties of spheroidal particles to third order with respect to size parameter. Physical<br/>Review A. 2019, 99</mml:math<br> | 2.5  | 13        |
| 14 | Electromagnetic interactions of dye molecules surrounding a nanosphere. Nanoscale, 2019, 11, 12177-12187.                                                                                                                                            | 5.6  | 15        |
| 15 | Mind the gap: testing the Rayleigh hypothesis in T-matrix calculations with adjacent spheroids. Optics Express, 2019, 27, 35750.                                                                                                                     | 3.4  | 17        |
| 16 | Modeling Molecular Orientation Effects in Dye-Coated Nanostructures Using a Thin-Shell<br>Approximation of Mie Theory for Radially Anisotropic Media. ACS Photonics, 2018, 5, 5002-5009.                                                             | 6.6  | 10        |
| 17 | Realistic ports in integrating spheres: reflectance, transmittance, and angular redirection. Applied Optics, 2018, 57, 1581.                                                                                                                         | 1.8  | 9         |
| 18 | Optical Absorption of Dye Molecules in a Spherical Shell Geometry. Journal of Physical Chemistry C, 2018, 122, 19110-19115.                                                                                                                          | 3.1  | 12        |

BAPTISTE AUGUIé

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Spheroidal harmonic expansions for the solution of Laplace's equation for a point source near a sphere. Physical Review E, 2017, 95, 033307.                                                              | 2.1  | 9         |
| 20 | Electrostatic limit of the T-matrix for electromagnetic scattering: Exact results for spheroidal particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 200, 50-58.                | 2.3  | 9         |
| 21 | Numerical investigation of the Rayleigh hypothesis for electromagnetic scattering by a particle.<br>Journal of Optics (United Kingdom), 2016, 18, 075007.                                                 | 2.2  | 18        |
| 22 | smarties: User-friendly codes for fast and accurate calculations of light scattering by spheroids.<br>Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 174, 39-55.                      | 2.3  | 44        |
| 23 | Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage.<br>Nature Photonics, 2016, 10, 40-45.                                                                       | 31.4 | 115       |
| 24 | Critical coupling to Tamm plasmons. Journal of Optics (United Kingdom), 2015, 17, 035003.                                                                                                                 | 2.2  | 71        |
| 25 | Accurate and convergent T-matrix calculations of light scattering by spheroids. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 160, 29-35.                                            | 2.3  | 26        |
| 26 | Synergetic Light-Harvesting and Near-Field Enhancement in Multiscale Patterned Gold Substrates. ACS<br>Photonics, 2015, 2, 1355-1365.                                                                     | 6.6  | 8         |
| 27 | Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application. ACS Photonics, 2014, 1, 775-780.                                                                                          | 6.6  | 171       |
| 28 | Radiative correction in approximate treatments of electromagnetic scattering by point and body scatterers. Physical Review A, 2013, 87, .                                                                 | 2.5  | 43        |
| 29 | CW measurements of resonance Raman profiles, lineâ€widths, and crossâ€sections of fluorescent dyes:<br>application to Nile Blue A in water and ethanol. Journal of Raman Spectroscopy, 2013, 44, 573-581. | 2.5  | 17        |
| 30 | Simple accurate approximations for the optical properties of metallic nanospheres and nanoshells.<br>Physical Chemistry Chemical Physics, 2013, 15, 4233.                                                 | 2.8  | 41        |
| 31 | A new numerically stable implementation of the T-matrix method for electromagnetic scattering by spheroidal particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 123, 153-168.   | 2.3  | 26        |
| 32 | Diffractive chains of plasmonic nanolenses: combining near-field focusing and collective enhancement mechanisms. Optics Letters, 2012, 37, 4624.                                                          | 3.3  | 8         |
| 33 | Distribution of the SERS enhancement factor on the surface of metallic nano-particles. , 2012, , .                                                                                                        |      | 0         |
| 34 | Tiny Peaks vs Mega Backgrounds: A General Spectroscopic Method with Applications in Resonant<br>Raman Scattering and Atmospheric Absorptions. Analytical Chemistry, 2012, 84, 7938-7945.                  | 6.5  | 14        |
| 35 | Combined SPR and SERS Microscopy in the Kretschmann Configuration. Journal of Physical Chemistry<br>A, 2012, 116, 1000-1007.                                                                              | 2.5  | 43        |
| 36 | Severe loss of precision in calculations of T-matrix integrals. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 524-535.                                                          | 2.3  | 31        |

BAPTISTE AUGUIé

| #  | Article                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Microdroplet fabrication of silver–agarose nanocomposite beads for SERS optical accumulation.<br>Soft Matter, 2011, 7, 1321-1325.                                | 2.7  | 39        |
| 38 | Simplified expressions of the T-matrix integrals for electromagnetic scattering. Optics Letters, 2011, 36, 3482.                                                 | 3.3  | 17        |
| 39 | Fingers Crossed: Optical Activity of a Chiral Dimer of Plasmonic Nanorods. Journal of Physical<br>Chemistry Letters, 2011, 2, 846-851.                           | 4.6  | 204       |
| 40 | From individual to collective chirality in metal nanoparticles. Nano Today, 2011, 6, 381-400.                                                                    | 11.9 | 284       |
| 41 | Intense Optical Activity from Threeâ€Dimensional Chiral Ordering of Plasmonic Nanoantennas.<br>Angewandte Chemie - International Edition, 2011, 50, 5499-5503.   | 13.8 | 331       |
| 42 | Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate. Physical<br>Review B, 2010, 82, .                                    | 3.2  | 193       |
| 43 | Sensitivity of Localized Surface Plasmon Resonances to Bulk and Local Changes in the Optical Environment. Journal of Physical Chemistry C, 2009, 113, 5120-5125. | 3.1  | 94        |
| 44 | Diffractive coupling in gold nanoparticle arrays and the effect of disorder. Optics Letters, 2009, 34, 401.                                                      | 3.3  | 95        |
| 45 | Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole<br>arrays. Physical Review B, 2009, 79, .                     | 3.2  | 116       |
| 46 | Collective Resonances in Gold Nanoparticle Arrays. Physical Review Letters, 2008, 101, 143902.                                                                   | 7.8  | 915       |
| 47 | Localised modes of sub-wavelength hole arrays in thin metal films. , 2008, , .                                                                                   |      | 1         |
| 48 | Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser. IEEE<br>Photonics Technology Letters, 2006, 18, 1825-1827.               | 2.5  | 26        |
| 49 | Ultra-low Chromatic D= ispersion Measurement of Optical F. Ibers With a Tunable Fiber Laser. , 2006, , .                                                         |      | 0         |
| 50 | Laplace's equation for a point source near a sphere: improved internal solution using spheroidal<br>harmonics. IMA Journal of Applied Mathematics, 0, , .        | 1.6  | 2         |