
Christina L Stallings

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3711093/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Cytosolic Sensor cGAS Detects Mycobacterium tuberculosis DNA to Induce Type I Interferons and Activate Autophagy. Cell Host and Microbe, 2015, 17, 811-819.	11.0	520
2	Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature, 2015, 528, 565-569.	27.8	317
3	CarD Is an Essential Regulator of rRNA Transcription Required for Mycobacterium tuberculosis Persistence. Cell, 2009, 138, 146-159.	28.9	197
4	<i>Irg1</i> expression in myeloid cells prevents immunopathology during <i>M. tuberculosis</i> infection. Journal of Experimental Medicine, 2018, 215, 1035-1045.	8.5	190
5	Bacterial Pathogens versus Autophagy: Implications for Therapeutic Interventions. Trends in Molecular Medicine, 2016, 22, 1060-1076.	6.7	136
6	A promising bioconjugate vaccine against hypervirulent <i>Klebsiella pneumoniae</i> . Proceedings of the United States of America, 2019, 116, 18655-18663.	7.1	116
7	Bhlhe40 is an essential repressor of IL-10 during <i>Mycobacterium tuberculosis</i> infection. Journal of Experimental Medicine, 2018, 215, 1823-1838.	8.5	95
8	Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks. Journal of Bacteriology, 2016, 198, 1360-1373.	2.2	85
9	Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection. ELife, 2015, 4, .	6.0	65
10	CarD stabilizes mycobacterial open complexes via a two-tiered kinetic mechanism. Nucleic Acids Research, 2015, 43, 3272-3285.	14.5	62
11	Is Mycobacterium tuberculosis stressed out? A critical assessment of the genetic evidence. Microbes and Infection, 2010, 12, 1091-1101.	1.9	60
12	A platform for glycoengineering a polyvalent pneumococcal bioconjugate vaccine using E. coli as a host. Nature Communications, 2019, 10, 891.	12.8	60
13	A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	54
14	The stringent response and Mycobacterium tuberculosis pathogenesis. Pathogens and Disease, 2018, 76,	2.0	52
15	Chemical disarming of isoniazid resistance in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10510-10517.	7.1	48
16	Synthetic (p)ppGpp Analogue Is an Inhibitor of Stringent Response in Mycobacteria. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	47
17	<i>Plasmodium</i> IspD (2-C-Methyl- <scp>d</scp> -erythritol 4-Phosphate Cytidyltransferase), an Essential and Druggable Antimalarial Target. ACS Infectious Diseases, 2015, 1, 157-167.	3.8	42
18	CarD and RbpA modify the kinetics of initial transcription and slow promoter escape of the Mycobacterium tuberculosis RNA polymerase. Nucleic Acids Research, 2019, 47, 6685-6698.	14.5	42

CHRISTINA L STALLINGS

#	Article	IF	CITATIONS
19	The impact of ISGylation during Mycobacterium tuberculosis infection in mice. Microbes and Infection, 2017, 19, 249-258.	1.9	40
20	Select autophagy genes maintain quiescence of tissue-resident macrophages and increase susceptibility to Listeria monocytogenes. Nature Microbiology, 2020, 5, 272-281.	13.3	36
21	<scp>CarD</scp> integrates three functional modules to promote efficient transcription, antibiotic tolerance, and pathogenesis in mycobacteria. Molecular Microbiology, 2014, 93, 682-697.	2.5	31
22	Cooperative stabilization of <i>Mycobacterium tuberculosis rrnA</i> P3 promoter open complexes by RbpA and CarD. Nucleic Acids Research, 2016, 44, gkw577.	14.5	29
23	CarD contributes to diverse gene expression outcomes throughout the genome of <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13573-13581.	7.1	26
24	Perspectives and Advances in the Understanding of Tuberculosis. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 377-408.	22.4	26
25	UFMylation inhibits the proinflammatory capacity of interferon-γ–activated macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	24
26	Rv0004 is a new essential member of the mycobacterial DNA replication machinery. PLoS Genetics, 2017, 13, e1007115.	3.5	21
27	Characterization of phthiocerol and phthiodiolone dimycocerosate esters of M. tuberculosis by multiple-stage linear ion-trap MS. Journal of Lipid Research, 2016, 57, 142-155.	4.2	19
28	Identification of 4-Amino-Thieno[2,3- <i>d</i>]Pyrimidines as QcrB Inhibitors in Mycobacterium tuberculosis. MSphere, 2019, 4, .	2.9	19
29	Roles for Autophagy Proteins in Immunity and Host Defense. Veterinary Pathology, 2018, 55, 366-373.	1.7	16
30	Domains within RbpA Serve Specific Functional Roles That Regulate the Expression of Distinct Mycobacterial Gene Subsets. Journal of Bacteriology, 2018, 200, .	2.2	16
31	Catalytic and Non-Catalytic Roles for the Mono-ADP-Ribosyltransferase Arr in the Mycobacterial DNA Damage Response. PLoS ONE, 2011, 6, e21807.	2.5	15
32	Effects of Increasing the Affinity of CarD for RNA Polymerase on Mycobacterium tuberculosis Growth, rRNA Transcription, and Virulence. Journal of Bacteriology, 2017, 199, .	2.2	15
33	Genome-wide mapping of the distribution of CarD, RNAP σA, and RNAP β on the Mycobacterium smegmatis chromosome using chromatin immunoprecipitation sequencing. Genomics Data, 2014, 2, 110-113.	1.3	14
34	Analysis of the contribution of MTP and the predicted Flp pilus genes to Mycobacterium tuberculosis pathogenesis. Microbiology (United Kingdom), 2016, 162, 1784-1796.	1.8	12
35	Exploring the Role of Low-Density Neutrophils During Mycobacterium tuberculosis Infection. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	8
36	Host response: Inflammation promotes TB growth. Nature Microbiology, 2017, 2, 17102.	13.3	7

#	Article	IF	CITATIONS
37	Mycobacterium tuberculosis Rv3160c is a TetR-like transcriptional repressor that regulates expression of the putative oxygenase Rv3161c. Scientific Reports, 2021, 11, 1523.	3.3	6
38	Molecular dissection of RbpA-mediated regulation of fidaxomicin sensitivity in mycobacteria. Journal of Biological Chemistry, 2022, 298, 101752.	3.4	4
39	Editorial overview: Attrition warfare: host cell weapons against intracellular pathogens, and how the pathogens fight back. Current Opinion in Immunology, 2019, 60, vi-ix.	5.5	1
40	A Flexible and Deadly Way to Control Salmonella Infection. Immunity, 2020, 53, 471-473.	14.3	1