William E. Snyder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3710971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Past and recent farming degrades aquatic insect genetic diversity. Molecular Ecology, 2023, 32, 3356-3367.	3.9	3
2	Complex landscapes stabilize farm bird communities and their expected ecosystem services. Journal of Applied Ecology, 2022, 59, 927-941.	4.0	7
3	Bird predation and landscape context shape arthropod communities on broccoli. Condor, 2022, 124, .	1.6	1
4	Alternative prey mediate intraguild predation in the open field. Pest Management Science, 2022, 78, 3939-3946.	3.4	6
5	A traitâ€based framework for predicting foodborne pathogen risk from wild birds. Ecological Applications, 2022, 32, e2523.	3.8	7
6	Alternative Prey and Predator Interference Mediate Thrips Consumption by Generalists. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	0
7	Semiâ€natural habitat surrounding farms promotes multifunctionality in avian ecosystem services. Journal of Applied Ecology, 2022, 59, 898-908.	4.0	13
8	Precipitation change accentuates or reverses temperature effects on aphid dispersal. Ecological Applications, 2022, , e2593.	3.8	10
9	Invasive predator disrupts link between predator evenness and herbivore suppression. Biological Control, 2021, 153, 104470.	3.0	9
10	Insect–plant relationships predict the speed of insecticide adaptation. Evolutionary Applications, 2021, 14, 290-296.	3.1	10
11	Does the "Enemies Hypothesis―operate by enhancing natural enemy evenness?. Biological Control, 2021, 152, 104464.	3.0	10
12	Are specialists really safer than generalists for classical biocontrol?. BioControl, 2021, 66, 9-22.	2.0	7
13	Big wheel keep on turnin': Linking grower attitudes, farm management, and delivery of avian ecosystem services. Biological Conservation, 2021, 254, 108970.	4.1	9
14	Recent climate change is creating hotspots of butterfly increase and decline across North America. Global Change Biology, 2021, 27, 2702-2714.	9.5	36
15	M. S. Crossley et al. reply. Nature Ecology and Evolution, 2021, 5, 595-599.	7.8	1
16	Alternative prey and farming system mediate predation of Colorado potato beetles by generalists. Pest Management Science, 2021, , .	3.4	6
17	Complex life histories predispose aphids to recent abundance declines. Global Change Biology, 2021, 27, 4283-4293.	9.5	8
18	Using fine-scale relatedness to infer natural enemy movement. Biological Control, 2021, 160, 104662.	3.0	2

#	Article	IF	CITATIONS
19	Prey and predator biodiversity mediate aphid consumption by generalists. Biological Control, 2021, 160, 104650.	3.0	13
20	A sticky situation: honeydew of the pear psylla disrupts feeding by its predator <i>Orius sauteri</i> . Pest Management Science, 2020, 76, 75-84.	3.4	19
21	Highly diversified crop–livestock farming systems reshape wild bird communities. Ecological Applications, 2020, 30, e02031.	3.8	19
22	What Is the Spatial Extent of a Bemisia tabaci Population?. Insects, 2020, 11, 813.	2.2	4
23	Low Genetic Variability in Bemisia tabaci MEAM1 Populations within Farmscapes of Georgia, USA. Insects, 2020, 11, 834.	2.2	16
24	Host plants and <i>Wolbachia</i> shape the population genetics of sympatric herbivore populations. Evolutionary Applications, 2020, 13, 2740-2753.	3.1	13
25	No net insect abundance and diversity declines across US Long Term Ecological Research sites. Nature Ecology and Evolution, 2020, 4, 1368-1376.	7.8	147
26	Organic Farming Sharpens Plant Defenses in the Field. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	11
27	Exposure to predators, but not intraspecific competitors, heightens herbivore susceptibility to entomopathogens. Biological Control, 2020, 151, 104403.	3.0	5
28	Agricultural intensification heightens food safety risks posed by wild birds. Journal of Applied Ecology, 2020, 57, 2246-2257.	4.0	22
29	Can Generalist Predators Control Bemisia tabaci?. Insects, 2020, 11, 823.	2.2	18
30	Shifts in species interactions and farming contexts mediate net effects of birds in agroecosystems. Ecological Applications, 2020, 30, e02115.	3.8	29
31	Landscape context mediates the physiological stress response of birds to farmland diversification. Journal of Applied Ecology, 2020, 57, 671-680.	4.0	8
32	Landscape structure and climate drive population dynamics of an insect vector within intensely managed agroecosystems. Ecological Applications, 2020, 30, e02109.	3.8	13
33	Are we overestimating risk of enteric pathogen spillover from wild birds to humans?. Biological Reviews, 2020, 95, 652-679.	10.4	57
34	Soil organic matter links organic farming to enhanced predator evenness. Biological Control, 2020, 146, 104278.	3.0	22
35	Organic farms conserve a dung beetle species capable of disrupting fly vectors of foodborne pathogens. Biological Control, 2019, 137, 104020.	3.0	20
36	Organic Soils Control Beetle Survival While Competitors Limit Aphid Population Growth. Environmental Entomology, 2019, 48, 1323-1330.	1.4	14

#	Article	IF	CITATIONS
37	Give predators a complement: Conserving natural enemy biodiversity to improve biocontrol. Biological Control, 2019, 135, 73-82.	3.0	117
38	Organic farming promotes biotic resistance to foodborne human pathogens. Journal of Applied Ecology, 2019, 56, 1117-1127.	4.0	34
39	Dualâ€guild herbivory disrupts predatorâ€prey interactions in the field. Ecology, 2018, 99, 1089-1098.	3.2	20
40	Native turncoats and indirect facilitation of species invasions. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20171936.	2.6	18
41	Bacteria and Competing Herbivores Weaken Top–Down and Bottom–Up Aphid Suppression. Frontiers in Plant Science, 2018, 9, 1239.	3.6	16
42	Dung beetleâ€mediated soil modification: a data set for analyzing the effects of a recent introduction on soil quality. Ecology, 2018, 99, 1694-1694.	3.2	2
43	A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology, 2017, 23, 4946-4957.	9.5	259
44	Generalist predators consume spider mites despite the presence of alternative prey. Biological Control, 2017, 115, 157-164.	3.0	19
45	Responses of Aphid Vectors of <i>Potato leaf roll virus</i> to Potato Varieties. Plant Disease, 2017, 101, 1812-1818.	1.4	9
46	Are wolves just wasps with teeth? What invertebrates can teach us about mammal top predators. Food Webs, 2017, 12, 40-48.	1.2	11
47	Keystone nonconsumptive effects within a diverse predator community. Ecology and Evolution, 2017, 7, 10315-10325.	1.9	11
48	Using NextRAD sequencing to infer movement of herbivores among host plants. PLoS ONE, 2017, 12, e0177742.	2.5	20
49	REVIEW: A mechanistic framework to improve understanding and applications of pushâ€pull systems in pest management. Journal of Applied Ecology, 2016, 53, 202-212.	4.0	46
50	Agricultural practices for food safety threaten pest control services for fresh produce. Journal of Applied Ecology, 2016, 53, 1402-1412.	4.0	51
51	Checklist of the Psylloidea (Hemiptera) of the U. S. Pacific Northwest. Proceedings of the Entomological Society of Washington, 2016, 118, 498-509.	0.2	2
52	Trap crop diversity enhances crop yield. Agriculture, Ecosystems and Environment, 2016, 232, 254-262.	5.3	23
53	Thrips (Thysanoptera) Collected from S <i>olanum dulcamara</i> (Solanales: Solanaceae) in Washington and Idaho. Florida Entomologist, 2016, 99, 306-307.	0.5	0
54	Editorial: Molecular and isotopic approaches to food webs in agroecosystems. Food Webs, 2016, 9, 1-3.	1.2	6

#	Article	IF	CITATIONS
55	Arthropod Pests and Predators Associated With Bittersweet Nightshade, a Noncrop Host of the Potato Psyllid (Hemiptera: Triozidae). Environmental Entomology, 2016, 45, 873-882.	1.4	11
56	The Red Queen in a potato field: integrated pest management versus chemical dependency in Colorado potato beetle control. Pest Management Science, 2015, 71, 343-356.	3.4	100
57	Complementary suppression of aphids by predators and parasitoids. Biological Control, 2015, 90, 83-91.	3.0	56
58	Pairwise interactions between functional groups improve biological control. Biological Control, 2014, 78, 49-54.	3.0	8
59	Flowers promote aphid suppression in apple orchards. Biological Control, 2013, 66, 8-15.	3.0	71
60	Spud Web. , 2013, , 271-290.		0
61	Conserving and promoting evenness: organic farming and fireâ€based wildland management as case studies. Ecology, 2012, 93, 2001-2007.	3.2	55
62	Niche engineering reveals complementary resource use. Ecology, 2012, 93, 1994-2000.	3.2	26
63	A simple plant mutation abets a predator-diversity cascade. Ecology, 2012, 93, 411-420.	3.2	11
64	Alien vs. predator: Could biotic resistance by native generalist predators slow lady beetle invasions?. Biological Control, 2012, 63, 79-86.	3.0	9
65	Entomopathogen biodiversity increases host mortality. Biological Control, 2011, 59, 277-283.	3.0	38
66	Predator biodiversity increases the survivorship of juvenile predators. Oecologia, 2011, 166, 723-730.	2.0	16
67	Cannibalism and Intraguild Predation of Eggs Within a Diverse Predator Assemblage. Environmental Entomology, 2011, 40, 8-14.	1.4	15
68	A non-trophic interaction chain links predators in different spatial niches. Oecologia, 2010, 162, 747-753.	2.0	13
69	Eating their way to the top? Mechanisms underlying the success of invasive insect generalist predators. Biological Invasions, 2010, 12, 2857-2876.	2.4	87
70	Antipredator behavior of Colorado potato beetle larvae differs by instar and attacking predator. Biological Control, 2010, 53, 230-237.	3.0	20
71	Organic agriculture promotes evenness and natural pest control. Nature, 2010, 466, 109-112.	27.8	485
72	Niche saturation reveals resource partitioning among consumers. Ecology Letters, 2010, 13, 338-348.	6.4	74

#	Article	IF	CITATIONS
73	Conserving the benefits of predator biodiversity. Biological Conservation, 2010, 143, 2260-2269.	4.1	66
74	Cascading diversity effects transmitted exclusively by behavioral interactions. Ecology, 2010, 91, 2242-2252.	3.2	49
75	Cascading diversity effects transmitted exclusively by behavioral interactions. Ecology, 2010, 91, 100319061621033.	3.2	1
76	Coccinellids in diverse communities: Which niche fits?. Biological Control, 2009, 51, 323-335.	3.0	53
77	Harmful effects of mustard bio-fumigants on entomopathogenic nematodes. Biological Control, 2009, 48, 147-154.	3.0	29
78	Mustard biofumigation disrupts biological control by Steinernema spp. nematodes in the soil. Biological Control, 2009, 48, 316-322.	3.0	64
79	Scared sick? Predator–pathogen facilitation enhances exploitation of a shared resource. Ecology, 2009, 90, 2832-2839.	3.2	63
80	Variable Attachment to Plant Surface Waxes by Predatory Insects. , 2009, , 157-181.		12
81	INCREASING ENEMY BIODIVERSITY STRENGTHENS HERBIVORE SUPPRESSION ON TWO PLANT SPECIES. Ecology, 2008, 89, 1605-1615.	3.2	97
82	Niche Partitioning Increases Resource Exploitation by Diverse Communities. Science, 2008, 321, 1488-1490.	12.6	331
83	Are the conservation of natural enemy biodiversity and biological control compatible goals?. Biological Control, 2008, 45, 225-237.	3.0	285
84	Predator biodiversity strengthens aphid suppression across single- and multiple-species prey communities. Biological Control, 2008, 44, 52-60.	3.0	65
85	Pymetrozine Causes a Nontarget Pest, the Colorado Potato Beetle (Coleoptera: Chrysomelidae), to Leave Potato Plants. Journal of Economic Entomology, 2008, 101, 74-80.	1.8	1
86	Identity, Abundance, and Phenology of <1>Anagrus 1 spp. (Hymenoptera: Mymaridae) and Leafhoppers (Homoptera: Cicadellidae) Associated with Grape, Blackberry, and Wild Rose in Washington State. Annals of the Entomological Society of America, 2007, 100, 41-52.	2.5	16
87	SPECIES IDENTITY DOMINATES THE RELATIONSHIP BETWEEN PREDATOR BIODIVERSITY AND HERBIVORE SUPPRESSION. Ecology, 2006, 87, 277-282.	3.2	199
88	Experimental Approaches to Understanding the Relationship Between Predator Biodiversity and Biological Control. , 2006, , 221-239.		12
89	DIVERSE TRAIT-MEDIATED INTERACTIONS IN A MULTI-PREDATOR, MULTI-PREY COMMUNITY. Ecology, 2006, 87, 1131-1137.	3.2	52
90	Predator biodiversity strengthens herbivore suppression. Ecology Letters, 2006, 9, 789-796.	6.4	296

#	Article	IF	CITATIONS
91	Polyphagy complicates conservation biological control that targets generalist predators. Journal of Applied Ecology, 2006, 43, 343-352.	4.0	140

92 Effects of Generalist Phytoseiid Mites and Grapevine Canopy Structure on Spider Mite (Acari:) Tj ETQq0 0 0 rgBT /Overlock 10 Jf 50 702

93	Ecological Effects of Invasive Arthropod Generalist Predators. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 95-122.	8.3	301
94	Comparison of Predator and Pest Communities in Washington Potato Fields Treated with Broad-Spectrum, Selective, or Organic Insecticides. Environmental Entomology, 2005, 34, 87-95.	1.4	76
95	Impact of management intensity on mites (Acari: Tetranychidae, Phytoseiidae) in Southcentral Washington wine grapes. International Journal of Acarology, 2005, 31, 277-288.	0.7	26
96	Alternative prey disrupt biocontrol by a guild of generalist predators. Biological Control, 2005, 32, 243-251.	3.0	134
97	Effects of chlorpyrifos and sulfur on spider mites (Acari: Tetranychidae) and their natural enemies. Biological Control, 2005, 33, 324-334.	3.0	81
98	<i>Aphidius ervi</i> (Hymenoptera: Braconidae) Increases Its Adult Size by Disrupting Host Wing Development. Environmental Entomology, 2004, 33, 1523-1527.	1.4	11
99	A synthesis of subdisciplines: predator-prey interactions, and biodiversity and ecosystem functioning. Ecology Letters, 2004, 8, 102-116.	6.4	337
100	Intraguild predation and successful invasion by introduced ladybird beetles. Oecologia, 2004, 140, 559-565.	2.0	155
101	Complementary biocontrol of aphids by the ladybird beetle Harmonia axyridis and the parasitoid Aphelinus asychis on greenhouse roses. Biological Control, 2004, 30, 229-235.	3.0	72
102	Predation of green peach aphids by generalist predators in the presence of alternative, Colorado potato beetle egg prey. Biological Control, 2004, 31, 237-244.	3.0	38
103	Negative dietary effects of Colorado potato beetle eggs for the larvae of native and introduced ladybird beetles. Biological Control, 2004, 31, 353-361.	3.0	25
104	Predator interference limits fly egg biological control by a guild of ground-active beetles. Biological Control, 2004, 31, 428-437.	3.0	66
105	The relationship between predator density, community composition, and field predation of Colorado potato beetle eggs. Biological Control, 2004, 31, 453-461.	3.0	36
106	INTERACTIONS BETWEEN SPECIALIST AND GENERALIST NATURAL ENEMIES: PARASITOIDS, PREDATORS, AND PEA APHID BIOCONTROL. Ecology, 2003, 84, 91-107.	3.2	299
107	INTERACTIONS BETWEEN SPECIALIST AND GENERALIST NATURAL ENEMIES: PARASITOIDS, PREDATORS, AND PEA APHID BIOCONTROL. , 2003, 84, 91.		1
108	GENERALIST PREDATORS DISRUPT BIOLOGICAL CONTROL BY A SPECIALIST PARASITOID. Ecology, 2001, 82, 705-716.	3.2	263

#	Article	IF	CITATIONS
109	CONTRASTING TROPHIC CASCADES GENERATED BY A COMMUNITY OF GENERALIST PREDATORS. Ecology, 2001, 82, 1571-1583.	3.2	136
110	Sex-Based Differences in Antipredator Behavior in the Spotted Cucumber Beetle (Coleoptera:) Tj ETQq0 0 0 rgBT	/Overlock 1.4	10,1f 50 702

111	Lontrasting Trophic Cascades Generated by a Community of Generalist Predators. Ecology, 2001, 82, 1571.	3.2	8
112	Generalist Predators Disrupt Biological Control by a Specialist Parasitoid. Ecology, 2001, 82, 705.	3.2	17
113	Antipredator Behavior of Spotted Cucumber Beetles (Coleoptera: Chrysomelidae) in Response to Predators That Pose Varying Risks. Environmental Entomology, 2000, 29, 35-42.	1.4	43

Nutritional Benefits of Cannibalism for the Lady Beetle <i>Harmonia axyridis </i> (Coleoptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 542

115	Cannibalizing Harmonia axyridis (Coleoptera: Coccinellidae) larvae use endogenous cues to avoid eating relatives. Journal of Evolutionary Biology, 1999, 12, 792-797.	1.7	52
116	The Fitness of Manipulating Phenotypes: Implications for Studies of Fluctuating Asymmetry and Multivariate Selection. Evolution; International Journal of Organic Evolution, 1999, 53, 1312.	2.3	8
117	Predator Interference and the Establishment of Generalist Predator Populations for Biocontrol. Biological Control, 1999, 15, 283-292.	3.0	141
118	THE FITNESS OF MANIPULATING PHENOTYPES: IMPLICATIONS FOR STUDIES OF FLUCTUATING ASYMMETRY AND MULTIVARIATE SELECTION. Evolution; International Journal of Organic Evolution, 1999, 53, 1312-1318.	2.3	14
119	Insect-Mediated Dispersal of the Rhizobacterium Pseudomonas chlororaphis. Phytopathology, 1998, 88, 1248-1254.	2.2	16
120	Egg-hatch phenology and intraguild predation between two mantid species. Oecologia, 1995, 104, 496-500.	2.0	31
121	Adult Dispersal of Tenodera aridifolia sinensis (Mantodea: Mantidae). Environmental Entomology, 1992, 21, 350-353.	1.4	20
122	Population dynamics and species interactions. , 0, , 62-74.		0
123	Natural enemy functional identity, trait-mediated interactions and biological control. , 0, , 450-465.		10