William E. Snyder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3710971/publications.pdf

Version: 2024-02-01

123 papers	6,791 citations	76326 40 h-index	78 g-index
134	134	134	5397
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Organic agriculture promotes evenness and natural pest control. Nature, 2010, 466, 109-112.	27.8	485
2	A synthesis of subdisciplines: predator-prey interactions, and biodiversity and ecosystem functioning. Ecology Letters, 2004, 8, 102-116.	6.4	337
3	Niche Partitioning Increases Resource Exploitation by Diverse Communities. Science, 2008, 321, 1488-1490.	12.6	331
4	Ecological Effects of Invasive Arthropod Generalist Predators. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 95-122.	8.3	301
5	INTERACTIONS BETWEEN SPECIALIST AND GENERALIST NATURAL ENEMIES: PARASITOIDS, PREDATORS, AND PEA APHID BIOCONTROL. Ecology, 2003, 84, 91-107.	3.2	299
6	Predator biodiversity strengthens herbivore suppression. Ecology Letters, 2006, 9, 789-796.	6.4	296
7	Are the conservation of natural enemy biodiversity and biological control compatible goals?. Biological Control, 2008, 45, 225-237.	3.0	285
8	GENERALIST PREDATORS DISRUPT BIOLOGICAL CONTROL BY A SPECIALIST PARASITOID. Ecology, 2001, 82, 705-716.	3.2	263
9	A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology, 2017, 23, 4946-4957.	9.5	259
10	SPECIES IDENTITY DOMINATES THE RELATIONSHIP BETWEEN PREDATOR BIODIVERSITY AND HERBIVORE SUPPRESSION. Ecology, 2006, 87, 277-282.	3.2	199
11	Intraguild predation and successful invasion by introduced ladybird beetles. Oecologia, 2004, 140, 559-565.	2.0	155
12	No net insect abundance and diversity declines across US Long Term Ecological Research sites. Nature Ecology and Evolution, 2020, 4, 1368-1376.	7.8	147
13	Predator Interference and the Establishment of Generalist Predator Populations for Biocontrol. Biological Control, 1999, 15, 283-292.	3.0	141
14	Polyphagy complicates conservation biological control that targets generalist predators. Journal of Applied Ecology, 2006, 43, 343-352.	4.0	140
15	CONTRASTING TROPHIC CASCADES GENERATED BY A COMMUNITY OF GENERALIST PREDATORS. Ecology, 2001, 82, 1571-1583.	3.2	136
16	Alternative prey disrupt biocontrol by a guild of generalist predators. Biological Control, 2005, 32, 243-251.	3.0	134
17	Give predators a complement: Conserving natural enemy biodiversity to improve biocontrol. Biological Control, 2019, 135, 73-82.	3.0	117

Nutritional Benefits of Cannibalism for the Lady Beetle<i>Harmonia axyridis</i>(Coleoptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 To 1.4

#	Article	IF	CITATIONS
19	The Red Queen in a potato field: integrated pest management versus chemical dependency in Colorado potato beetle control. Pest Management Science, 2015, 71, 343-356.	3.4	100
20	INCREASING ENEMY BIODIVERSITY STRENGTHENS HERBIVORE SUPPRESSION ON TWO PLANT SPECIES. Ecology, 2008, 89, 1605-1615.	3.2	97
21	Eating their way to the top? Mechanisms underlying the success of invasive insect generalist predators. Biological Invasions, 2010, 12, 2857-2876.	2.4	87
22	Effects of chlorpyrifos and sulfur on spider mites (Acari: Tetranychidae) and their natural enemies. Biological Control, 2005, 33, 324-334.	3.0	81
23	Comparison of Predator and Pest Communities in Washington Potato Fields Treated with Broad-Spectrum, Selective, or Organic Insecticides. Environmental Entomology, 2005, 34, 87-95.	1.4	76
24	Niche saturation reveals resource partitioning among consumers. Ecology Letters, 2010, 13, 338-348.	6.4	74
25	Complementary biocontrol of aphids by the ladybird beetle Harmonia axyridis and the parasitoid Aphelinus asychis on greenhouse roses. Biological Control, 2004, 30, 229-235.	3.0	72
26	Flowers promote aphid suppression in apple orchards. Biological Control, 2013, 66, 8-15.	3.0	71
27	Predator interference limits fly egg biological control by a guild of ground-active beetles. Biological Control, 2004, 31, 428-437.	3.0	66
28	Conserving the benefits of predator biodiversity. Biological Conservation, 2010, 143, 2260-2269.	4.1	66
29	Predator biodiversity strengthens aphid suppression across single- and multiple-species prey communities. Biological Control, 2008, 44, 52-60.	3.0	65
30	Mustard biofumigation disrupts biological control by Steinernema spp. nematodes in the soil. Biological Control, 2009, 48, 316-322.	3.0	64
31	Scared sick? Predator–pathogen facilitation enhances exploitation of a shared resource. Ecology, 2009, 90, 2832-2839.	3.2	63
32	Are we overestimating risk of enteric pathogen spillover from wild birds to humans?. Biological Reviews, 2020, 95, 652-679.	10.4	57
33	Complementary suppression of aphids by predators and parasitoids. Biological Control, 2015, 90, 83-91.	3.0	56
34	Conserving and promoting evenness: organic farming and fireâ€based wildland management as case studies. Ecology, 2012, 93, 2001-2007.	3.2	55
35	Coccinellids in diverse communities: Which niche fits?. Biological Control, 2009, 51, 323-335.	3.0	53
36	Cannibalizing Harmonia axyridis (Coleoptera: Coccinellidae) larvae use endogenous cues to avoid eating relatives. Journal of Evolutionary Biology, 1999, 12, 792-797.	1.7	52

#	Article	IF	CITATIONS
37	DIVERSE TRAIT-MEDIATED INTERACTIONS IN A MULTI-PREDATOR, MULTI-PREY COMMUNITY. Ecology, 2006, 87, 1131-1137.	3.2	52
38	Agricultural practices for food safety threaten pest control services for fresh produce. Journal of Applied Ecology, 2016, 53, 1402-1412.	4.0	51
39	Cascading diversity effects transmitted exclusively by behavioral interactions. Ecology, 2010, 91, 2242-2252.	3.2	49
40	REVIEW: A mechanistic framework to improve understanding and applications of pushâ€pull systems in pest management. Journal of Applied Ecology, 2016, 53, 202-212.	4.0	46
41	Antipredator Behavior of Spotted Cucumber Beetles (Coleoptera: Chrysomelidae) in Response to Predators That Pose Varying Risks. Environmental Entomology, 2000, 29, 35-42.	1.4	43
42	Predation of green peach aphids by generalist predators in the presence of alternative, Colorado potato beetle egg prey. Biological Control, 2004, 31, 237-244.	3.0	38
43	Entomopathogen biodiversity increases host mortality. Biological Control, 2011, 59, 277-283.	3.0	38
44	The relationship between predator density, community composition, and field predation of Colorado potato beetle eggs. Biological Control, 2004, 31, 453-461.	3.0	36
45	Recent climate change is creating hotspots of butterfly increase and decline across North America. Global Change Biology, 2021, 27, 2702-2714.	9.5	36
46	Organic farming promotes biotic resistance to foodborne human pathogens. Journal of Applied Ecology, 2019, 56, 1117-1127.	4.0	34
47	Egg-hatch phenology and intraguild predation between two mantid species. Oecologia, 1995, 104, 496-500.	2.0	31
48	Harmful effects of mustard bio-fumigants on entomopathogenic nematodes. Biological Control, 2009, 48, 147-154.	3.0	29
49	Shifts in species interactions and farming contexts mediate net effects of birds in agroecosystems. Ecological Applications, 2020, 30, e02115.	3.8	29
50	Impact of management intensity on mites (Acari: Tetranychidae, Phytoseiidae) in Southcentral Washington wine grapes. International Journal of Acarology, 2005, 31, 277-288.	0.7	26
51	Niche engineering reveals complementary resource use. Ecology, 2012, 93, 1994-2000.	3.2	26
52	Negative dietary effects of Colorado potato beetle eggs for the larvae of native and introduced ladybird beetles. Biological Control, 2004, 31, 353-361.	3.0	25
53	Trap crop diversity enhances crop yield. Agriculture, Ecosystems and Environment, 2016, 232, 254-262.	5.3	23

Sex-Based Differences in Antipredator Behavior in the Spotted Cucumber Beetle (Coleoptera:) Tj ETQq $0\ 0\ 0\ rgBT$ /Overlock $10\ Tf\ 50\ 62\ Tg$

#	Article	IF	Citations
55	Agricultural intensification heightens food safety risks posed by wild birds. Journal of Applied Ecology, 2020, 57, 2246-2257.	4.0	22
56	Soil organic matter links organic farming to enhanced predator evenness. Biological Control, 2020, 146, 104278.	3.0	22
57	Adult Dispersal of Tenodera aridifolia sinensis (Mantodea: Mantidae). Environmental Entomology, 1992, 21, 350-353.	1.4	20
58	Antipredator behavior of Colorado potato beetle larvae differs by instar and attacking predator. Biological Control, 2010, 53, 230-237.	3.0	20
59	Dualâ€guild herbivory disrupts predatorâ€prey interactions in the field. Ecology, 2018, 99, 1089-1098.	3.2	20
60	Organic farms conserve a dung beetle species capable of disrupting fly vectors of foodborne pathogens. Biological Control, 2019, 137, 104020.	3.0	20
61	Using NextRAD sequencing to infer movement of herbivores among host plants. PLoS ONE, 2017, 12, e0177742.	2.5	20
62	Generalist predators consume spider mites despite the presence of alternative prey. Biological Control, 2017, 115, 157-164.	3.0	19
63	A sticky situation: honeydew of the pear psylla disrupts feeding by its predator <i>Orius sauteri</i> Pest Management Science, 2020, 76, 75-84.	3.4	19
64	Highly diversified crop–livestock farming systems reshape wild bird communities. Ecological Applications, 2020, 30, e02031.	3.8	19
65	Effects of Generalist Phytoseiid Mites and Grapevine Canopy Structure on Spider Mite (Acari:) Tj ETQq1 1 0.7843	314 rgBT /	Overlock 10
66	Native turncoats and indirect facilitation of species invasions. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20171936.	2.6	18
67	Can Generalist Predators Control Bemisia tabaci?. Insects, 2020, 11, 823.	2.2	18
68	Generalist Predators Disrupt Biological Control by a Specialist Parasitoid. Ecology, 2001, 82, 705.	3.2	17
69	Insect-Mediated Dispersal of the Rhizobacterium Pseudomonas chlororaphis. Phytopathology, 1998, 88, 1248-1254.	2.2	16
70	Identity, Abundance, and Phenology of <i>Anagrus</i> spp. (Hymenoptera: Mymaridae) and Leafhoppers (Homoptera: Cicadellidae) Associated with Grape, Blackberry, and Wild Rose in Washington State. Annals of the Entomological Society of America, 2007, 100, 41-52.	2.5	16
71	Predator biodiversity increases the survivorship of juvenile predators. Oecologia, 2011, 166, 723-730.	2.0	16
72	Bacteria and Competing Herbivores Weaken Top–Down and Bottom–Up Aphid Suppression. Frontiers in Plant Science, 2018, 9, 1239.	3.6	16

#	Article	IF	Citations
73	Low Genetic Variability in Bemisia tabaci MEAM1 Populations within Farmscapes of Georgia, USA. Insects, 2020, 11, 834.	2.2	16
74	Cannibalism and Intraguild Predation of Eggs Within a Diverse Predator Assemblage. Environmental Entomology, 2011, 40, 8-14.	1.4	15
75	THE FITNESS OF MANIPULATING PHENOTYPES: IMPLICATIONS FOR STUDIES OF FLUCTUATING ASYMMETRY AND MULTIVARIATE SELECTION. Evolution; International Journal of Organic Evolution, 1999, 53, 1312-1318.	2.3	14
76	Organic Soils Control Beetle Survival While Competitors Limit Aphid Population Growth. Environmental Entomology, 2019, 48, 1323-1330.	1.4	14
77	A non-trophic interaction chain links predators in different spatial niches. Oecologia, 2010, 162, 747-753.	2.0	13
78	Host plants and <i>Wolbachia</i> shape the population genetics of sympatric herbivore populations. Evolutionary Applications, 2020, 13, 2740-2753.	3.1	13
79	Landscape structure and climate drive population dynamics of an insect vector within intensely managed agroecosystems. Ecological Applications, 2020, 30, e02109.	3.8	13
80	Prey and predator biodiversity mediate aphid consumption by generalists. Biological Control, 2021, 160, 104650.	3.0	13
81	Semiâ€natural habitat surrounding farms promotes multifunctionality in avian ecosystem services. Journal of Applied Ecology, 2022, 59, 898-908.	4.0	13
82	Experimental Approaches to Understanding the Relationship Between Predator Biodiversity and Biological Control., 2006,, 221-239.		12
83	Variable Attachment to Plant Surface Waxes by Predatory Insects. , 2009, , 157-181.		12
84	<i>Aphidius ervi</i> (Hymenoptera: Braconidae) Increases Its Adult Size by Disrupting Host Wing Development. Environmental Entomology, 2004, 33, 1523-1527.	1.4	11
85	A simple plant mutation abets a predator-diversity cascade. Ecology, 2012, 93, 411-420.	3.2	11
86	Arthropod Pests and Predators Associated With Bittersweet Nightshade, a Noncrop Host of the Potato Psyllid (Hemiptera: Triozidae). Environmental Entomology, 2016, 45, 873-882.	1.4	11
87	Are wolves just wasps with teeth? What invertebrates can teach us about mammal top predators. Food Webs, 2017, 12, 40-48.	1.2	11
88	Keystone nonconsumptive effects within a diverse predator community. Ecology and Evolution, 2017, 7, 10315-10325.	1.9	11
89	Organic Farming Sharpens Plant Defenses in the Field. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	11
90	Natural enemy functional identity, trait-mediated interactions and biological control., 0,, 450-465.		10

#	Article	IF	CITATIONS
91	Insect–plant relationships predict the speed of insecticide adaptation. Evolutionary Applications, 2021, 14, 290-296.	3.1	10
92	Does the "Enemies Hypothesis―operate by enhancing natural enemy evenness?. Biological Control, 2021, 152, 104464.	3.0	10
93	Precipitation change accentuates or reverses temperature effects on aphid dispersal. Ecological Applications, 2022, , e2593.	3.8	10
94	Alien vs. predator: Could biotic resistance by native generalist predators slow lady beetle invasions?. Biological Control, 2012, 63, 79-86.	3.0	9
95	Responses of Aphid Vectors of <i>Potato leaf roll virus</i> to Potato Varieties. Plant Disease, 2017, 101, 1812-1818.	1.4	9
96	Invasive predator disrupts link between predator evenness and herbivore suppression. Biological Control, 2021, 153, 104470.	3.0	9
97	Big wheel keep on turnin': Linking grower attitudes, farm management, and delivery of avian ecosystem services. Biological Conservation, 2021, 254, 108970.	4.1	9
98	The Fitness of Manipulating Phenotypes: Implications for Studies of Fluctuating Asymmetry and Multivariate Selection. Evolution; International Journal of Organic Evolution, 1999, 53, 1312.	2.3	8
99	Pairwise interactions between functional groups improve biological control. Biological Control, 2014, 78, 49-54.	3.0	8
100	Landscape context mediates the physiological stress response of birds to farmland diversification. Journal of Applied Ecology, 2020, 57, 671-680.	4.0	8
101	Complex life histories predispose aphids to recent abundance declines. Global Change Biology, 2021, 27, 4283-4293.	9.5	8
102	Contrasting Trophic Cascades Generated by a Community of Generalist Predators. Ecology, 2001, 82, 1571.	3.2	8
103	Are specialists really safer than generalists for classical biocontrol?. BioControl, 2021, 66, 9-22.	2.0	7
104	Complex landscapes stabilize farm bird communities and their expected ecosystem services. Journal of Applied Ecology, 2022, 59, 927-941.	4.0	7
105	A traitâ€based framework for predicting foodborne pathogen risk from wild birds. Ecological Applications, 2022, 32, e2523.	3.8	7
106	Editorial: Molecular and isotopic approaches to food webs in agroecosystems. Food Webs, 2016, 9, 1-3.	1.2	6
107	Alternative prey and farming system mediate predation of Colorado potato beetles by generalists. Pest Management Science, 2021, , .	3.4	6
108	Alternative prey mediate intraguild predation in the open field. Pest Management Science, 2022, 78, 3939-3946.	3.4	6

#	Article	IF	CITATIONS
109	Exposure to predators, but not intraspecific competitors, heightens herbivore susceptibility to entomopathogens. Biological Control, 2020, 151, 104403.	3.0	5
110	What Is the Spatial Extent of a Bemisia tabaci Population?. Insects, 2020, 11, 813.	2,2	4
111	Past and recent farming degrades aquatic insect genetic diversity. Molecular Ecology, 2023, 32, 3356-3367.	3.9	3
112	Checklist of the Psylloidea (Hemiptera) of the U. S. Pacific Northwest. Proceedings of the Entomological Society of Washington, 2016, 118, 498-509.	0.2	2
113	Dung beetleâ€mediated soil modification: a data set for analyzing the effects of a recent introduction on soil quality. Ecology, 2018, 99, 1694-1694.	3.2	2
114	Using fine-scale relatedness to infer natural enemy movement. Biological Control, 2021, 160, 104662.	3.0	2
115	M. S. Crossley et al. reply. Nature Ecology and Evolution, 2021, 5, 595-599.	7.8	1
116	Pymetrozine Causes a Nontarget Pest, the Colorado Potato Beetle (Coleoptera: Chrysomelidae), to Leave Potato Plants. Journal of Economic Entomology, 2008, 101, 74-80.	1.8	1
117	INTERACTIONS BETWEEN SPECIALIST AND GENERALIST NATURAL ENEMIES: PARASITOIDS, PREDATORS, AND PEA APHID BIOCONTROL. , 2003, 84, 91.		1
118	Cascading diversity effects transmitted exclusively by behavioral interactions. Ecology, 2010, 91, 100319061621033.	3.2	1
119	Bird predation and landscape context shape arthropod communities on broccoli. Condor, 2022, 124, .	1.6	1
120	Population dynamics and species interactions. , 0, , 62-74.		0
121	Spud Web., 2013,, 271-290.		0
122	Thrips (Thysanoptera) Collected from S <i>olanum dulcamara</i> (Solanales: Solanaceae) in Washington and Idaho. Florida Entomologist, 2016, 99, 306-307.	0.5	0
123	Alternative Prey and Predator Interference Mediate Thrips Consumption by Generalists. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	0