Dietmar Moser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3710255/publications.pdf

Version: 2024-02-01

117625 66911 7,741 79 34 78 h-index citations g-index papers 80 80 80 9713 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Influences of landscape structure on butterfly diversity in urban private gardens using a citizen science approach. Urban Ecosystems, 2022, 25, 477-486.	2.4	3
2	Climate warming may increase the frequency of cold-adapted haplotypes in alpine plants. Nature Climate Change, 2022, 12, 77-82.	18.8	12
3	Establishing new grasslands on crop fields: shortâ€ŧerm development of plant and arthropod communities. Restoration Ecology, 2022, 30, .	2.9	8
4	Postglacial range expansion of highâ€elevation plants is restricted by dispersal ability and habitat specialization. Journal of Biogeography, 2022, 49, 1739-1752.	3.0	4
5	Conservation status and ecology of the highly threatened endemic Gentianella bohemica. Preslia, 2022, 94, 255-273.	2.8	O
6	Biodiversity models need to represent landâ€use intensity more comprehensively. Global Ecology and Biogeography, 2021, 30, 924-932.	5.8	25
7	Functional traits driving pollinator and predator responses to newly established grassland strips in agricultural landscapes. Journal of Applied Ecology, 2021, 58, 1728-1737.	4.0	13
8	Ant community composition and functional traits in new grassland strips within agricultural landscapes. Ecology and Evolution, 2021, 11, 8319-8331.	1.9	5
9	Deadwood volumes matter in epixylic bryophyte conservation, but precipitation limits the establishment of substrate-specific communities. Forest Ecology and Management, 2021, 493, 119285.	3.2	9
10	Re-established grasslands on farmland promote pollinators more than predators. Agriculture, Ecosystems and Environment, 2021, 319, 107543.	5.3	14
11	Climate Variables Outstrip Deadwood Amount: Desiccation as the Main Trigger for Buxbaumia viridis Occurrence. Plants, 2021, 10, 61.	3.5	4
12	Longâ€ŧerm continuity of steppe grasslands in eastern Central Europe: Evidence from species distribution patterns and chloroplast haplotypes. Journal of Biogeography, 2021, 48, 3104-3117.	3.0	7
13	What Will the Future Bring for Biological Invasions on Islands? An Expert-Based Assessment. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	33
14	Occurrence of apomictic conspecifics and ecological preferences rather than colonization history govern the geographic distribution of sexual Potentilla puberula. Ecology and Evolution, 2020, 10, 7306-7319.	1.9	4
15	Habitat availability disproportionally amplifies climate change risks for lowland compared to alpine species. Global Ecology and Conservation, 2020, 23, e01113.	2.1	14
16	Economic use of plants is key to their naturalization success. Nature Communications, 2020, 11, 3201.	12.8	79
17	A socioâ€ecological model for predicting impacts of landâ€use and climate change on regional plant diversity in the Austrian Alps. Global Change Biology, 2020, 26, 2336-2352.	9.5	26
18	Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB PLANTS, 2019, 11, plz051.	2.3	72

#	Article	lF	CITATIONS
19	Extinction debts and colonization credits of non-forest plants in the European Alps. Nature Communications, 2019, 10, 4293.	12.8	63
20	Evaluating climatic threats to habitat types based on co-occurrence patterns of characteristic species. Basic and Applied Ecology, 2019, 38, 23-35.	2.7	4
21	Effects of climate change and horticultural use on the spread of naturalized alien garden plants in Europe. Ecography, 2019, 42, 1548-1557.	4.5	2
22	An integrated, spatioâ€ŧemporal modelling framework for analysing biological invasions. Diversity and Distributions, 2018, 24, 652-665.	4.1	5
23	Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2264-E2273.	7.1	416
24	Range dynamics of mountain plants decrease with elevation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1848-1853.	7.1	284
25	Reconstructing geographical parthenogenesis: effects of niche differentiation and reproductive mode on Holocene range expansion of an alpine plant. Ecology Letters, 2018, 21, 392-401.	6.4	32
26	Functional trait differences and trait plasticity mediate biotic resistance to potential plant invaders. Journal of Ecology, 2018, 106, 1607-1620.	4.0	50
27	Simulating plant invasion dynamics in mountain ecosystems under global change scenarios. Global Change Biology, 2018, 24, e289-e302.	9.5	54
28	A new method for jointly assessing effects of climate change and nitrogen deposition on habitats. Biological Conservation, 2018, 228, 52-61.	4.1	11
29	Remoteness promotes biological invasions on islands worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9270-9275.	7.1	114
30	The role of adaptive strategies in plant naturalization. Ecology Letters, 2018, 21, 1380-1389.	6.4	69
31	Relating species richness to the structure of continuous landscapes: alternative methodological approaches. Ecosphere, 2018, 9, e02189.	2.2	7
32	European ornamental garden flora as an invasion debt under climate change. Journal of Applied Ecology, 2018, 55, 2386-2395.	4.0	45
33	No saturation in the accumulation of alien species worldwide. Nature Communications, 2017, 8, 14435.	12.8	1,543
34	Plant species richness decreased in semi-natural grasslands in the Biosphere Reserve Wienerwald, Austria, over the past two decades, despite agri-environmental measures. Agriculture, Ecosystems and Environment, 2017, 243, 10-18.	5. 3	35
35	Will climate change increase hybridization risk between potential plant invaders and their congeners in Europe?. Diversity and Distributions, 2017, 23, 934-943.	4.1	19
36	Global hotspots and correlates of alien species richness across taxonomic groups. Nature Ecology and Evolution, 2017, 1, .	7.8	315

3

#	Article	IF	CITATIONS
37	Habitat-based conservation strategies cannot compensate for climate-change-induced rangeÂloss. Nature Climate Change, 2017, 7, 823-827.	18.8	55
38	Diversity, biogeography and the global flows of alien amphibians and reptiles. Diversity and Distributions, 2017, 23, 1313-1322.	4.1	87
39	Climate change will increase the naturalization risk from garden plants in Europe. Global Ecology and Biogeography, 2017, 26, 43-53.	5.8	87
40	Accounting for imperfect observation and estimating true species distributions in modelling biological invasions. Ecography, 2017, 40, 1187-1197.	4.5	11
41	Naturalized alien flora of the world. Preslia, 2017, 89, 203-274.	2.8	350
42	Uncertainty in predicting range dynamics of endemic alpine plants under climate warming. Global Change Biology, 2016, 22, 2608-2619.	9.5	40
43	A matter of scale: apparent niche differentiation of diploid and tetraploid plants may depend on extent and grain of analysis. Journal of Biogeography, 2016, 43, 716-726.	3.0	73
44	Changes in the spatial patterns of human appropriation of net primary production (HANPP) in Europe 1990–2006. Regional Environmental Change, 2016, 16, 1225-1238.	2.9	55
45	Weak agreement between the species conservation status assessments of the European Habitats Directive and Red Lists. Biological Conservation, 2016, 198, 1-8.	4.1	15
46	Biogeography and ecology of endemic invertebrate species in Austria: A cross-taxon analysis. Basic and Applied Ecology, 2016, 17, 95-105.	2.7	9
47	Diversity, distribution, ecology and description rates of alpine endemic plant species from Iranian mountains. Alpine Botany, 2016, 126, 1-9.	2.4	38
48	Benefits and costs of controlling three allergenic alien species under climate change and dispersal scenarios in Central Europe. Environmental Science and Policy, 2016, 56, 9-21.	4.9	8
49	Identifying alien bryophytes taking into account uncertainties: a reply to Patiño & Vanderpoorten (2015). Journal of Biogeography, 2015, 42, 1362-1363.	3.0	3
50	Modelling the effect of habitat fragmentation on climateâ€driven migration of European forest understorey plants. Diversity and Distributions, 2015, 21, 1375-1387.	4.1	32
51	Changes in plant lifeâ€form, pollination syndrome and breeding system at a regional scale promoted by land use intensity. Diversity and Distributions, 2015, 21, 1319-1328.	4.1	10
52	Global trade will accelerate plant invasions in emerging economies under climate change. Global Change Biology, 2015, 21, 4128-4140.	9.5	301
53	A High-Resolution Map of Emerald Ash Borer Invasion Risk for Southern Central Europe. Forests, 2015, 6, 3075-3086.	2.1	22
54	The dispersal of alien species redefines biogeography in the Anthropocene. Science, 2015, 348, 1248-1251.	12.6	331

#	Article	IF	Citations
55	Biological Flora of the British Isles: <i>Ambrosia artemisiifolia</i> . Journal of Ecology, 2015, 103, 1069-1098.	4.0	164
56	Macroecology of global bryophyte invasions at different invasion stages. Ecography, 2015, 38, 488-498.	4.5	11
57	Global exchange and accumulation of non-native plants. Nature, 2015, 525, 100-103.	27.8	746
58	Little, but increasing evidence of impacts by alien bryophytes. Biological Invasions, 2014, 16, 1175-1184.	2.4	23
59	How well do we know species richness in a wellâ€known continent? Temporal patterns of endemic and widespread species descriptions in the <scp>E</scp> uropean fauna. Global Ecology and Biogeography, 2013, 22, 29-39.	5.8	36
60	Telling a different story: a global assessment of bryophyte invasions. Biological Invasions, 2013, 15, 1933-1946.	2.4	25
61	Potential of genetically modified oilseed rape for biofuels inÂAustria: Land use patterns and coexistence constraints could decrease domestic feedstock production. Biomass and Bioenergy, 2013, 50, 35-44.	5.7	15
62	Native, alien, endemic, threatened, and extinct species diversity in European countries. Biological Conservation, 2013, 164, 90-97.	4.1	35
63	Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change, 2012, 2, 619-622.	18.8	582
64	Ancient and recent alien species in temperate forests: steady state and time lags. Biological Invasions, 2012, 14, 1331-1342.	2.4	48
65	Vulnerability of mires under climate change: implications for nature conservation and climate change adaptation. Biodiversity and Conservation, 2012, 21, 655-669.	2.6	61
66	Macroecological drivers of alien conifer naturalizations worldwide. Ecography, 2011, 34, 1076-1084.	4.5	32
67	Selection for commercial forestry determines global patterns of alien conifer invasions. Diversity and Distributions, 2010, 16, 911-921.	4.1	69
68	Interacting effects of wind direction and resource distribution on insect pest densities. Basic and Applied Ecology, 2009, 10, 208-215.	2.7	25
69	Ground-dwelling predators can affect within-field pest insect emergence in winter oilseed rape fields. BioControl, 2009, 54, 247-253.	2.0	36
70	Parasitism of stem weevils and pollen beetles in winter oilseed rape is differentially affected by crop management and landscape characteristics. BioControl, 2009, 54, 505-514.	2.0	29
71	Spider assemblages in winter oilseed rape affected by landscape and site factors. Ecography, 2008, 31, 254-262.	4.5	74
72	Insect pests in winter oilseed rape affected by field and landscape characteristics. Basic and Applied Ecology, 2008, 9, 682-690.	2.7	84

DIETMAR MOSER

#	Article	IF	CITATIONS
73	Spatial distribution patterns of Rhynchostegium megapolitanum at the landscape scale $\hat{a} \in \hat{a}$ an expanding species?. Applied Vegetation Science, 2007, 10, 111.	1.9	11
74	Environmental determinants of vascular plant species richness in the Austrian Alps. Journal of Biogeography, 2005, 32, 1117-1127.	3.0	115
75	Human appropriation of net primary production and species diversity in agricultural landscapes. Agriculture, Ecosystems and Environment, 2004, 102, 213-218.	5.3	106
76	Surrogate taxa for biodiversity in agricultural landscapes of eastern Austria. Biological Conservation, 2004, 117, 181-190.	4.1	169
77	Distribution of endangered bryophytes in Austrian agricultural landscapes. Biological Conservation, 2002, 103, 173-182.	4.1	23
78	Title is missing!. Landscape Ecology, 2002, 17, 657-669.	4.2	216
79	The influence of agricultural land-use intensity on bryophyte species richness. Biodiversity and Conservation, 2001, 10, 1609-1625.	2.6	79