Fabio De Angelis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3710195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A multifield variational formulation of viscoplasticity suitable to deal with singularities and non-smooth functions. International Journal of Engineering Science, 2022, 172, 103616.	5.0	2
2	On solutions to a FitzHugh–Rinzel type model. Ricerche Di Matematica, 2021, 70, 51-65.	1.0	14
3	Non-smooth evolutive laws in multisurface elastoplasticity with experimental evidence by infrared thermography. Composite Structures, 2021, 265, 113156.	5.8	5
4	Base Isolation Systems for Structures Subject to Anomalous Dynamic Events. Lecture Notes in Mechanical Engineering, 2020, , 175-187.	0.4	0
5	Assessment and vulnerability reduction of under-designed existing structures: Traditional vs innovative strategy. Computers and Structures, 2019, 221, 44-64.	4.4	10
6	Dynamic analysis and vulnerability reduction of asymmetric structures: Fixed base vs base isolated system. Composite Structures, 2019, 219, 203-220.	5.8	20
7	Dynamic assessment of base isolation systems for irregular in plan structures: Response spectrum analysis vs nonlinear analysis. Composite Structures, 2019, 215, 98-115.	5.8	25
8	The influence of loading rates on hardening effects in elasto/viscoplastic strain-hardening materials. Mechanics of Time-Dependent Materials, 2018, 22, 533-551.	4.4	14
9	Extended formulations of evolutive laws and constitutive relations in non-smooth plasticity and viscoplasticity. Composite Structures, 2018, 193, 35-41.	5.8	11
10	Assessment and dynamic nonlinear analysis of different base isolation systems for a multi-storey RC building irregular in plan. Computers and Structures, 2017, 180, 74-88.	4.4	57
11	Multifield variational principles and computational aspects in rate plasticity. Computers and Structures, 2017, 180, 27-39.	4.4	20
12	A base isolation system for structures subject to extreme seismic events characterized by anomalous values of intensity and frequency content. Composite Structures, 2016, 157, 285-302.	5.8	31
13	Nonlinear dynamic analysis for multi-storey RC structures with hybrid base isolation systems in presence of bi-directional ground motions. Composite Structures, 2016, 154, 464-492.	5.8	40
14	A nonlinear finite element plasticity formulation without matrix inversions. Finite Elements in Analysis and Design, 2016, 112, 11-25.	3.2	25
15	An efficient return mapping algorithm for elastoplasticity with exact closed form solution of the local constitutive problem. Engineering Computations, 2015, 32, 2259-2291.	1.4	30
16	Computational Issues and Numerical Applications in Rate-Dependent Plasticity. Advanced Science Letters, 2013, 19, 2359-2362.	0.2	17
17	Seismic Vulnerability of Existing RC Buildings and Influence of the Decoupling of the Effective Masonry Panels from the Structural Frames. Applied Mechanics and Materials, 2012, 256-259, 2244-2253.	0.2	2
18	Assessment of the Seismic Vulnerability of Existing RC Buildings and Effect of the Irregular Position of the Masonry Panels on the Fragile Collapse Mechanisms. Advanced Materials Research, 2012, 602-604, 1555-1565.	0.3	2

FABIO DE ANGELIS

#	Article	IF	CITATIONS
19	Displacement Based Approach for the Seismic Retrofitting of a RC Existing Building Designed for only Gravitational Loads. Applied Mechanics and Materials, 2012, 166-169, 1718-1729.	0.2	13
20	An internal variable variational formulation of viscoplasticity. Computer Methods in Applied Mechanics and Engineering, 2000, 190, 35-54.	6.6	40
21	A Nonlinear Analysis for the Retrofitting of a RC Existing Building by Increasing the Cross Sections of the Columns and Accounting for the Influence of the Confined Concrete. Applied Mechanics and Materials, 0, 204-208, 3604-3616.	0.2	13