Ming Hu

List of Publications by Year in descending order

[^0]
1
2 Development of Rofecoxibâ€Based Fluorophores from ACQ to AIE by Positional Regioisomerization.
ChemPlusChem, 2022, 87, e202100522.

SIRT1 inhibitionâ€induced senescence as a strategy to prevent prostate cancer progression. Molecular Carcinogenesis, 2022, 61, 702-716.

Irinotecan decreases intestinal UDP-glucuronosyltransferase (UGT) 1A1 via TLR4/MyD88 pathway prior to the onset of diarrhea. Food and Chemical Toxicology, 2022, 166, 113246.

The role of gut microbial 1 ̂-glucuronidase in drug disposition and development. Drug Discovery Today, 2022, 27, 103316.

Parallel guidewire technique in acute ischemic stroke secondary to carotid artery dissection. Annals
$5 \quad \begin{aligned} & \text { of Palliative Medicine, 2021, 10, 266-277. }\end{aligned}$
1.2
6.45

6 Meet Our Editor-in-Chief. Current Drug Metabolism, 2021, 22, 1-1.
$1.2 \quad 2$

7 One-Step Transformation from Rofecoxib to a COX-2 NIR Probe for Human Cancer Tissue/Organoid
7 Targeted Bioimaging. ACS Applied Bio Materials, 2021, 4, 2723-2731.
4.6

11

Intestinal Excretion, Intestinal Recirculation, and Renal Tubule Reabsorption Are Underappreciated
8 Mechanisms That Drive the Distribution and Pharmacokinetic Behavior of Small Molecule Drugs.
Journal of Medicinal Chemistry, 2021, 64, 7045-7059.

Age-and Region-Dependent Disposition of Raloxifene in Rats. Pharmaceutical Research, 2021, 38,
1357-1367.
3.5

0

The Function of Multidrug Resistance-associated Protein 3 in the Transport of Bile Acids under 10 Normal Physiological and Lithocholic Acid-induced Cholestasis Conditions. Current Drug Metabolism, 2021, 22, 353-362.

11 Hepatoenteric recycling is a new disposition mechanism for orally administered phenolic drugs and phytochemicals in rats. ELife, 2021, 10, .

Overexpression of MRP3 in HeLa-UGT1A9 Cells Enhances Clucuronidation Capability of the Cells.
Current Drug Metabolism, 2021, 22, .
1.2

0

Glucuronides Hydrolysis by Intestinal Microbial $̂$ ²-Glucuronidases (GUS) Is Affected by Sampling,
Enzyme Preparation, Buffer pH, and Species. Pharmaceutics, 2021, 13, 1043.

A positiveâ€"negative switching LC-MS/MS method for quantification of fenoldopam and its phase II
14 metabolites: Applications to a pharmacokinetic study in rats. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1179, 122854.

Pharmacokinetic Characterization and Bioavailability Barrier for the Key Active Components of
15 Botanical Drug Antitumor B (ATB) in Mice for Chemoprevention of Oral Cancer. Journal of Natural
3.0

Products, 2021, 84, 2486-2495.
UGT1A1 dysfunction increases liver burden and aggravates hepatocyte damage caused by long-term
bilirubin metabolism disorder. Biochemical Pharmacology, 2021, 190, 114592.

Activity, Mechanochromism, and COX-2-Targeted Bioimaging. Analytical Chemistry, 2021, 93, 11991-12000.
6.5

10
19
20

> Insight into tartrate inhibition patterns in vitro and in vivo based on cocrystal structure with UDP-glucuronosyltransferase 2B15. Biochemical Pharmacology, 2020, 172, 113753.
4.4

14

Acute changes in colonic PGE2 levels as a biomarker of efficacy after treatment of the Pirc (F344/NTac-ApcÂam1137) rat with celecoxib. Inflammation Research, 2020, 69, 131-137.
Development and validation of ultraâ€highâ€performance liquid chromatographyâ€"mass spectrometry
21 method for the determination of raloxifene and its phase II metabolites in plasma: Application to $\quad 6.5$

22 Potential role of drug metabolizing enzymes in chemotherapy-induced gastrointestinal toxicity and
3.3

20
hepatotoxicity. Expert Opinion on Drug Metabolism and Toxicology, 2020, 16, 1109-1124.

Rapid intestinal glucuronidation and hepatic glucuronide recycling contributes significantly to the
23 enterohepatic circulation of icaritin and its glucuronides in vivo. Archives of Toxicology, 2020, 94,
$4.2 \quad 7$ 3737-3749.

24 Design and Synthesis of a Novel NIR Celecoxib-Based Fluorescent Probe for Cyclooxygenase-2 Targeted
Bioimaging in Tumor Cells. Molecules, 2020, 25, 4037.
3.8

Pharmacokinetic and Metabolic Profiling of Key Active Components of Dietary Supplement
25 <i>Magnolia officinalis</i> Extract for Prevention against Oral Carcinoma. Journal of Agricultural
5.2
and Food Chemistry, 2020, 68, 6576-6587.
Receptor-interacting protein kinase 2 (RIPK2) and nucleotide-binding oligomerization domain (NOD)
37

$$
\begin{aligned}
& \text { Xiao-Chai-Hu-Tang (XCHT) Intervening Irinotecanâ€ }{ }^{T M} \text { s Disposition: The Potential of XCHT in Alleviating } \\
& \text { Irinotecan-Induced Diarrhea. Current Cancer Drug Targets, 2019, 19, 551-560. }
\end{aligned}
$$

$1.6 \quad 8$

38 Bioavailability and Pharmacokinetics of Dihydroartemisinin (DHA) and its Analogsâ€"Mechanistic Studies on its ADME. Current Pharmacology Reports, 2018, 4, 33-44.
3.0

2
Tissue Distribution and Gender-Specific Protein Expression of Cytochrome P450 in five Mouse
Genotypes with a Background of FVB. Pharmaceutical Research, 2018, 35, 114.
$40 \quad \begin{aligned} & \text { Development and validation of a sensitive LCâ€"MS/MS method for simultaneous determination of eight } \\ & \text { tyrosine kinase inhibitors and its application in mice pharmacokinetic studies. Journal of }\end{aligned}$ Pharmaceutical and Biomedical Analysis, 2018, 148, 65-72.
Simultaneous determination of tilianin and its metabolites in mice using ultraâ€highâ€performance liquid
41 chromatography with tandem mass spectrometry and its application to a pharmacokinetic study. Biomedical Chromatography, 2018, 32, e4139.

42 Accurate quantification of PGE 2 in the polyposis in rat colon (Pirc) model by surrogate analyte-based
UPLCâ€"MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2018, 148, 42-50.
$2.8 \quad 8$
Role of Bacterial Translocation in the Progressive and Delayed Irinotecan Induced Diarrhea.. , 2018, 08,

Interplay of Efflux Transporters with Glucuronidation and Its Impact on Subcellular Aglycone and
Glucuronide Disposition: A Case Study with Kaempferol. Molecular Pharmaceutics, 2018, 15, 5602-5614.
4.6

Discovery and Characterization of Dual Inhibitors of MDM2 and NFAT1 for Pancreatic Cancer Therapy.
Cancer Research, 2018, 78, 5656-5667.

Metabolism of Phenolic Compounds in LPS-stimulated Raw264.7 Cells Can Impact Their
Anti-inflammatory efficacy: Indication of Hesperetin. Journal of Agricultural and Food Chemistry,
2018, 66, 6042-6052.
Vitexin protects dopaminergic neurons in MPTP-induced Parkinson\’s disease through
PI3K/Akt signaling pathway. Drug Design, Development and Therapy, 2018, Volume 12, 565-573.
Ageâ€related changes in hepatic expression and activity of drug metabolizing enzymes in male wildâ€type
48 and breast cancer resistance protein knockout mice. Biopharmaceutics and Drug Disposition, 2018, 39, 344-353.

> Transcutaneously refillable nanofluidic implant achieves sustained level of tenofovir diphosphate
> for HIV pre-exposure prophylaxis. Journal of Controlled Release, 2018, 286, 315-325.

50 Impact of diet on irinotecan toxicity in mice. Chemico-Biological Interactions, 2018, 291, 87-94.
4.0

10

Transportâ $€^{\prime \prime}$ Clucuronidation Classification System and PBPK Modeling: New Approach To Predict the
51 Impact of Transporters on Disposition of Glucuronides. Molecular Pharmaceutics, 2017, 14, 2884-2898.
$4.6 \quad 8$

Glucuronidation: driving factors and their impact on glucuronide disposition. Drug Metabolism
Reviews, 2017, 49, 105-138.
3.6

82

55	LC-MS/MS quantification of sulfotransferases is better than conventional immunogenic methods determining human liver SULT activities: implication in precision medicine. Scientific Reports, 2017 3858.
56	Development of a validated UPLCâ€"MS/MS method for determination of humantenmine in rat p and its application in pharmacokinetics and bioavailability studies. Biomedical Chromatography, 2 31, e4017.
57	Inhibition of Human UCT1A1-Mediated Bilirubin Clucuronidation by Polyphenolic Acids Impact Sa Popular Salvianolic Acid A/B-Containing Drugs and Herbal Products. Molecular Pharmaceutics, 20 14, 2952-2966.
58	High-Throughput and Reliable Isotope Label-free Approach for Profiling 24 Metabolic Enzymes in F Mice and Sex Differences. Drug Metabolism and Disposition, 2017, 45, 624-634.
59	Metabolic Disposition of Luteolin Is Mediated by the Interplay of UDP-Glucuronosyltransferases and Catechol-<i>O</i>-Methyltransferases in Rats. Drug Metabolism and Disposition, 2017, 45, 306-3
60	Bioavailability of Polyphenols and Flavonoids in the Era of Precision Medicine. Molecular Pharmaceutics, 2017, 14, 2861-2863.
61	Disposition of Flavonoids for Personal Intake. Current Pharmacology Reports, 2017, 3, 196-212.
62	An LCâ€"MS/MS method for simultaneous determination of nine steroidal saponins from Paris polyphylla var. in rat plasma and its application to pharmacokinetic study. Journal of Pharmaceutic and Biomedical Analysis, 2017, 145, 675-681.
63	An UPLC-MS/MS method for quantifying tetrandrine and its metabolite berbamine in human bloo Application to a human pharmacokinetic study. Journal of Chromatography B: Analytical Technolo in the Biomedical and Life Sciences, 2017, 1070, 92-96.
64	Profiles and Gender-Specifics of UDP-Glucuronosyltransferases and Sulfotransferases Expressions the Major Metabolic Organs of Wild-Type and Efflux Transporter Knockout FVB Mice. Molecular Pharmaceutics, 2017, 14, 2967-2976.
65	Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/ $\hat{1}^{2}$-catenin signaling. Oncotarget, 2016, 7, 31413-31428.

Novel histone deacetylase inhibitors derived from Magnolia officinalis significantly enhance
TRAlL-induced apoptosis in non-small cell lung cancer. Pharmacological Research, 2016, 111,
TRAIL-induced apoptosis in non-small cell lung cancer. Pharmacological Research, 2016, 111, 113-125.
Development and validation of an UPLCâ€"MS/MS method for the quantification of irinotecan, SN-38 and
74 SN-38 glucuronide in plasma, urine, feces, liver and kidney: Application to a pharmacokinetic study of irinotecan in rats. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life
2.3 Sciences, 2016, 1015-1016, 34-41.

75 Curcumin Affects Phase II Disposition of Resveratrol Through Inhibiting Efflux Transporters MRP2 and BCRP. Pharmaceutical Research, 2016, 33, 590-602.

SGLT-1 Transport and Deglycosylation inside Intestinal Cells Are Key Steps in the Absorption and
Disposition of Calycosin-7-O-Â-D-Glucoside in Rats. Drug Metabolism and Disposition, 2016, 44, 283-296.
3.3

Speciesâ€ \cdot and genderâ€dependent differences in the glucuronidation of a flavonoid glucoside and its
77 aglycone determined using expressed UGT enzymes and microsomes. Biopharmaceutics and Drug
1.9

Disposition, 2015, 36, 622-635.
Factors Influencing Oral Bioavailability of Thai Mango Seed Kernel Extract and Its Key Phenolic
Principles. Molecules, 2015, 20, 21254-21273.

Reductive metabolism of oxymatrine is catalyzed by microsomal CYP3A4. Drug Design, Development and
Therapy, 2015, 9, 5771.

Characterization of Oxygenated Metabolites of Cinsenoside Rbl in Plasma and Urine of Rat. Journal of
Agricultural and Food Chemistry, 2015, 63, 2689-2700.
Significantly Decreased and More Variable Expression of Major CYPs and UCTs in Liver Microsomes
81 Prepared from HBV-Positive Human Hepatocellular Carcinoma and Matched Pericarcinomatous Tissues
Determined Using an Isotope Label-free UPLC-MS/MS Method. Pharmaceutical Research, 2015, 32,
1141-1.157
A validated liquid chromatographyấ "tandem mass spectrometry method for the determination of methyl gallate and pentagalloyl glucopyranose: Application to pharmacokinetic studies. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 986-987, 12-17.
Development and validation of an UPLC-MS/MS method for the quantification of ethoxzolamide in
83 blood, brain tissue, and bioequivalent buffers: Applications to absorption, brain distribution, and
pharmacokinetic studies. Journal of Chromatography B: Analytical Technologies in the Biomedical and
Life Sciences, 2015, 986-987, 54-59.
Quantitation of celecoxib and four of its metabolites in rat blood by UPLC-MS/MS clarifies their
84 blood distribution patterns and provides more accurate pharmacokinetics profiles. Journal of
Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 1001, 202-211.
Developing an activity and absorption-based quality control platform for Chinese traditional
85 medicine: Application to Zeng-Sheng-Ping(Antitumor B). Journal of Ethnopharmacology, 2015, 172,
4.1 195-201.
Determination of Pharmacokinetics of Chrysin and Its Conjugates in Wild-Type FVB and Bcrpl Knockout
86 Mice Using a Validated LC-MS/MS Method. Journal of Agricultural and Food Chemistry, 2015, 63,
2902-2910.
UDP-Glucuronosyltransferases 1A6 and 1A9 are the Major Isozymes Responsible for the
$87 \quad$ - - i $\rangle \mathrm{O}<$ li>-Glucuronidation of Esculetin and 4-Methylesculetin in Human Liver Microsomes. Drug
3.3

11
Metabolism and Disposition, 2015, 43, 977-983.
A combined strategy of mass fragmentation, post-column cobalt complexation and shift in ultraviolet absorption spectra to determine the uridine 5 â ϵ^{2}-diphospho-glucuronosyltransferase metabolism profiling of flavones after oral administration of a flavone mixture in rats. Journal of
Chromatography A, 2015, 1395, 116-128.
Triple Recycling Processes Impact Systemic and Local Bioavailability of Orally Administered
Flavonoids. AAPS Journal, 2015, 17, 723-736.

Technologies in the Biomedical and Life Sciences, 2015, 1003, 12-21.

Amino acid facilitates absorption of copper in the Caco-2 cell culture model. Life Sciences, 2014, 109, 50-56.

Validated LCâ $€$ "MS/MS method for the determination of 3-hydroxflavone and its glucuronide in blood

The role of efflux transporters on the transport of highly toxic aconitine, mesaconitine,
.
\square

117 Ginsenoside Rb1 Directly Scavenges Hydroxyl Radical and Hypochlorous Acid. Current Pharmaceutical Design, 2012, 18, 6339-6347.

119	UDP-Glucuronosyltransferase (UCT) 1A9-Overexpressing HeLa Cells Is an Appropriate Tool to Delineate the Kinetic Interplay between Breast Cancer Resistance Protein (BRCP) and UGT and to Rapidly Identify the Glucuronide Substrates of BCRP. Drug Metabolism and Disposition, 2012, 40, 336-345.	3.3	37
120	Breast Cancer Resistance Protein (ABCG2) Determines Distribution of Genistein Phase II Metabolites: Reevaluation of the Roles of ABCG2 in the Disposition of Genistein. Drug Metabolism and Disposition, 2012, 40, 1883-1893.	3.3	57
121	Bioavailability Challenges Associated with Development of Saponins As Therapeutic and Chemopreventive Agents. Current Drug Targets, 2012, 13, 1885-1899.	2.1	52
122	A Novel Local Recycling Mechanism That Enhances Enteric Bioavailability of Flavonoids and Prolongs Their Residence Time in the Gut. Molecular Pharmaceutics, 2012, 9, 3246-3258.	4.6	34
123	A New Strategy to Rapidly Evaluate Kinetics of Glucuronide Efflux by Breast Cancer Resistance Protein (BCRP/ABCC2). Pharmaceutical Research, 2012, 29, 3199-3208.	3.5	13
124	Mutual interactions between flavonoids and enzymatic and transporter elements responsible for flavonoid disposition via phase II metabolic pathways. RSC Advances, 2012, 2, 7948.	3.6	64
125	Development and validation of a highly sensitive UPLC-MS/MS method for simultaneous determination of aconitine, mesaconitine, hypaconitine, and five of their metabolites in rat blood and its application to a pharmacokinetics study of aconitine, mesaconitine, and hypaconitine. Xenobiotica, 2012, 42, 518-52.5.	1.1	21
126	Effects of Estrogen and Estrus Cycle on Pharmacokinetics, Absorption, and Disposition of Genistein in Female Spragueâ€"Dawley Rats. Journal of Agricultural and Food Chemistry, 2012, 60, 7949-7956.	5.2	12

$5.2 \quad 1$
5.2 2012, 60, 3223-3233.
Inhibition of P-Clycoprotein Leads to Improved Oral Bioavailability of Compound K, an Anticancer
Metabolite of Red Ginseng Extract Produced by Gut Microflora. Drug Metabolism and Disposition,
$3.3 \quad 66$ 2012, 40, 1538-1544.

Understanding substrate selectivity of human UDP-glucuronosyltransferases through QSAR modeling and analysis of homologous enzymes. Xenobiotica, 2012, 42, 808-820.
$1.1 \quad 29$

133	Accurate Prediction of Clucuronidation of Structurally Diverse Phenolics by Human UCT1A9 Using Combined Experimental and In Silico Approaches. Pharmaceutical Research, 2012, 29, 1544-1561.	3.5	16
134	Substrate selectivity of drug-metabolizing cytochrome P450s predicted from crystal structures and<i> in silico</i> modeling. Drug Metabolism Reviews, 2012, 44, 192-208.	3.6	37
135	A Useful Microsoft Excel Add-in Program for Modeling Steady-state Enzyme Kinetics. Pharmaceutica Analytica Acta, 2012, 01, .	0.2	5

3.8
55

Regioselective Glucuronidation of Flavonols by Six Human UGT1A Isoforms. Pharmaceutical Research,
3.5

40 2011, 28, 1905-1918.

First-Pass Metabolism via UDP-Glucuronosyltransferase: a Barrier to Oral Bioavailability of Phenolics.
141 Journal of Pharmaceutical Sciences, 2011, 100, 3655-3681.
3.3

241

Poor oral bioavailability of a promising anticancer agent andrographolide is due to extensive metabolism and efflux by Pâ€glycoprotein. Journal of Pharmaceutical Sciences, 2011, 100, 5007-5017.
3.3

Sensitive and robust UPLCâ€"MS/MS method to determine the gender-dependent pharmacokinetics in
143 rats of emodin and its glucuronide. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54,
2.8

1157-1162.
Validated LCâ€"MS/MS method for the determination of maackiain and its sulfate and glucuronide in Biomedical Analysis, 2011, 55, 288-293.
145
146

Three-Dimensional Quantitative Structure-Activity Relationship Studies on UGT1A9-Mediated
145 3-O-Glucuronidation of Natural Flavonols Using a Pharmacophore-Based Comparative Molecular Field
2.5

38
Analysis Model. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 403-413.

Enhancement of Oral Bioavailability of $20(\langle\mathrm{i}\rangle \mathrm{S}\langle\mid \mathrm{i}\rangle)$-Ginsenoside Rh 2 through Improved Understanding of Its Absorption and Efflux Mechanisms. Drug Metabolism and Disposition, 2011, 39, 1866-1872.
3.3

75
$147 \quad$ <i>In Vitro</i> Potency of Various Polymyxin B Components. Antimicrobial Agents and Chemotherapy,
$2011,55,4490-4491$.
3.2 2011, 55, 4490-4491.

148 Wiley Series in Drug Discovery and Development. , 2011, , 541-542.
0
Regioselective Sulfation and Glucuronidation of Phenolics: Insights into the Structural Basis.
Current Drug Metabolism, 2011, 12, 900-916.

82

150 Species and Gender Differences Affect the Metabolism of Emodin via Glucuronidation. AAPS Journal, 2010, 12, 424-436.
$4.4 \quad 57$
151 Breast Cancer Resistance Protein (BCRP) and Sulfotransferases Contribute Significantly to the Disposition of Genistein in Mouse Intestine. AAPS Journal, 2010, 12, 525-536.
$4.4 \quad 60$

Use of Clucuronidation Fingerprinting To Describe and Predict Mono- and Dihydroxyflavone
152 Metabolism by Recombinant UGT Isoforms and Human Intestinal and Liver Microsomes. Molecular
4.6 Pharmaceutics, 2010, 7, 664-679.

153 Biopharmaceutical and pharmacokinetic characterization of matrine as determined by a sensitive and \begin{tabular}{ll}
robust UPLCâ€"MS/MS method. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 1120-1127.

154 \& | Use of Isoform-Specific UGT Metabolism to Determine and Describe Rates and Profiles of |
| :--- |
| Glucuronidation of Wogonin and Oroxylin A by Human Liver and Intestinal Microsomes. |
| Pharmaceutical Research, 2010, 27, 1568-1583. |

\hline | Simultaneous determination of genistein and its four phase Il metabolites in blood by a sensitive and |
| :--- |
| robust UPLCâ€"MS/MS method: Application to an oral bioavailability study of genistein in mice. Journal |
| of Pharmaceutical and Biomedical Analysis, 2010, 53, 81-89. | \& 4.8

\end{tabular}

156 The Pharmacokinetics of Raloxifene and Its Interaction with Apigenin in Rat. Molecules, 2010, 15, 8478-8487.
3.8

18
157 Bioavailability Challenges Associated with Development of Anti-Cancer Phenolics. Mini-Reviews in
$2.4 \quad 179$ Medicinal Chemistry, 2010, 10, 550-567.

Highly Variable Contents of Phenolics in St. Johnâ€ ${ }^{T M}$ s Wort Products Affect Their Transport in the
158 Human Intestinal Caco-2 Cell Model: Pharmaceutical and Biopharmaceutical Rationale for Product
5.2

24
Standardization. Journal of Agricultural and Food Chemistry, 2010, 58, 6650-6659.
Identification of the Position of Mono-<i>O<|i>-glucuronide of Flavones and Flavonols by Analyzing
159 Shift in Online UV Spectrum ($\hat{\mid>}\rangle\langle s u b\rangle \max \langle/ s u b\rangle$) Generated from an Online Diode Array Detector. 5.2
48
Journal of Agricultural and Food Chemistry, 2010, 58, 9384-9395.

Disposition of Flavonoids via Enteric Recycling: UDP-Glucuronosyltransferase (UGT) 1As Deficiency in
160 Gunn Rats Is Compensated by Increases in UGT2Bs Activities. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 1023-1031.

161 Determination of osthol and its metabolites in a phase I reaction system and the Caco-2 cell model by
HPLC-UV and LCâ€"MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2009, 49, 1226-1232.
2.8

17

163 Disposition of Naringenin via Glucuronidation Pathway Is Affected by Compensating Efflux
Transporters of Hydrophilic Glucuronides. Molecular Pharmaceutics, 2009, 6, 1703-1715.

164 Oral Absorption Basics. , 2009, , 263-288.
7
Intestinal Absorption Mechanisms of Prenylated Flavonoids Present in the Heat-Processed Epimedium
koreanum Nakai (Yin Yanghuo). Pharmaceutical Research, 2008, 25, 2190-2199.

166 In Vivo Pharmacokinetics of Hesperidin Are Affected by Treatment with Glucosidase-like BgIA Protein Isolated from Yeasts. Journal of Agricultural and Food Chemistry, 2008, 56, 5550-5557.
5.2

Variable Isoflavone Content of Red Clover Products Affects Intestinal Disposition of Biochanin A,
167 Formononetin, Genistein, and Daidzein. Journal of Alternative and Complementary Medicine, 2008, 14,
$2.1 \quad 36$ 287-297.

168 Commentary: Bioavailability of Flavonoids and Polyphenols: Call to Arms. Molecular Pharmaceutics, 2007, 4, 803-806.
4.6

134

169 \begin{tabular}{l}
Disposition of Flavonoids via Enteric Recycling: Enzyme Stability Affects Characterization of Prunetin

Glucuronidation across Species, Organs, and UCT Isoforms. Molecular Pharmaceutics, 2007, 4, 883-8

170

Disposition of Flavonoids via Enteric Recycling: Determination of the UDP-Clucuronosyltransferase
Isoforms Responsible for the Metabolism of flavonoids in Intact Caco-2 TC7 Cells Using siRNA.
Molecular Pharmaceutics, 2007, 4, 873-882.

$171 \quad$| Natural polyphenol disposition via coupled metabolic pathways. Expert Opinion on Drug Metabolism |
| :--- |
| and Toxicology, 2007, 3, 389-406. |

172 Mechanisms Responsible for Poor Oral Bioavailability of Paeoniflorin: Role of Intestinal Disposition

and Interactions with Sinomenine. Pharmaceutical Research, 2006, 23, 2768-2780.
\end{tabular} in Vitro and in Situ Metabolic Properties. Drug Metabolism and Disposition, 2006, 34, 1837-1848.

174 Absorption and metabolism of genistein and its five isoflavone analogs in the human intestinal Caco-2 model. Cancer Chemotherapy and Pharmacology, 2005, 55, 159-169.
2.3

113
175 Coupling of Conjugating Enzymes and Efflux Transporters: Impact on Bioavailability and Drug Interactions. Current Drug Metabolism, 2005, 6, 455-468.

Disposition of Flavonoids via Recycling: Comparison of Intestinal versus Hepatic Disposition. Drug Metabolism and Disposition, 2005, 33, 1777-84.

SPECIES- AND DISPOSITION MODEL-DEPENDENT METABOLISM OF RALOXIFENE IN GUT AND LIVER: ROLE OF UGT1A10. Drug Metabolism and Disposition, 2005, 33, 785-794.

Disposition of Formononetin via Enteric Recycling:â€\% Metabolism and Excretion in Mouse Intestinal Perfusion and Caco-2 Cell Models. Molecular Pharmaceutics, 2005, 2, 319-328. and Experimental Therapeutics, 2004, 310, 1103-1113.$181 \begin{aligned} & \text { Disposition Mechanisms of Raloxifene in the Human In } \\ & \text { and Experimental Therapeutics, 2004, 310, 376-385. }\end{aligned}$
2.564Use of Caco-2 Cell Monolayers to Study Drug Absorption and Metabolism. , 2004, , 19-35.16
183 Potential Beneficial Metabolic Interactions Between Tamoxifen and Isoflavones via Cytochrome 3.5
P450-mediated Pathways in Female Rat Liver Microsomes. Pharmaceutical Research, 2004, 21, 2095-2104.
Nucleobase- and p-Glycoprotein-Mediated Transport of AG337 in a Caco-2 Cell Culture Model.Molecular Pharmaceutics, 2004, 1, 194-200.
4.6 6
IDENTIFICATION OF CYP1A2 AS THE MAIN ISOFORM FOR THE PHASE I HYDROXYLATED METABOLISM OF
185 GENISTEIN AND A PRODRUG CONVERTING ENZYME OF METHYLATED ISOFLAVONES. Drug Metabolism and 3.3 104Disposition, 2003, 31, 924-931.
Metabolism of Flavonoids via Enteric Recycling: Role of Intestinal Disposition. Journal ofPharmacology and Experimental Therapeutics, 2003, 304, 1228-1235.2.5226
Enteric Disposition and Recycling of Flavonoids and Ginkgo Flavonoids. Journal of Alternative and Enteric Disposition and Recycling of Flavonoi
Complementary Medicine, 2003, 9, 631-640. 2.1 70
Metabolism of Flavonoids via Enteric Recycling: Mechanistic Studies of Disposition of Apigenin in theCaco-2 Cell Culture Model. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 314-321.2.5132
Functional and Molecular Characterization of Rat Intestinal Prolidase. Pediatric Research, 2003, 53,905-914.
Absorption and Metabolism of Flavonoids in the Caco-2 Cell Culture Model and a Perused Rat Intestinal Model. Drug Metabolism and Disposition, 2002, 30, 370-377.3.3224
Kinetic Characterization of Secretory Transport of a New Ciprofloxacin Derivative (CNV97100) across191 Caco-2 Cell Monolayers**This work has been submitted for the partial fulfillment of the requ3.323
Pharmaceutical Sciences, 2002, 91, 2511-2519.
Analysis of drug transport and metabolism in cell monolayer systems that have been modified by4.029
cytochrome P4503A4 cDNA-expression. European Journal of Pharmaceutical Sciences, 2000, 12, 63-68. 192
193 Taurine inhibition of metal-stimulated catecholamine oxidation. Neurotoxicity Research, 2000, 2, 1-15.P-Glycoprotein and Bioavailability-Implication of Polymorphism. Clinical Chemistry and Laboratory2.325

Ming Hu

199 Uptake Characteristics of Loracarbef and Cephalexin in the Caco-2 Cell Culture Model: Effects of the Sciences, 1996, 85, 767-772.

200 Mechanisms of transport of quinapril in Caco-2 cell monolayers: comparison with cephalexin. Pharmaceutical Research, 1995, 12, 1120-1125.

Peptide Transporter Function and Prolidase Activities in Caco-2 Cells: A Lack of Coordinated Expression. Journal of Drug Targeting, 1995, 3, 291-300.

Mechanisms and Kinetics of Uptake and Efflux of L-Methionine in an Intestinal Epithelial Model (Caco-2). Journal of Nutrition, 1994, 124, 1907-1916.

203 Comparison of the transport characteristics of D- and L-methionine in a human intestinal epithelial model (Caco-2) and in a perfused rat intestinal model. Pharmaceutical Research, 1994, 11, 1771-1776.

Mechanism and kinetics of transcellular transport of a new beta-lactam antibiotic loracarbef across an intestinal epithelial membrane model system (Caco-2). Pharmaceutical Research, 1994, 11, 1405-1413.
3.5

Comparison of Uptake Characteristics of Thymidine and Zidovudine in a Human intestinal Epithelial Model System. Journal of Pharmaceutical Sciences, 1993, 82, 829-833.

Transport of a large neutral amino acid in a human intestinal epithelial cell line (Caco-2): uptake and efflux of phenylalanine. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1135, 233-244.

Utilization of Peptide Carrier System To Improve Intestinal Absorption: Targeting Prolidase as a
Prodrug-Converting Enzyme. Iournal of Pharmaceutical Sciences, 1992, 81, 113-116.
Prodrug-Converting Enzyme. Journal of Pharmaceutical Sciences, 1992, 81, 113-116.
3.3

49

208 Pharmaceutical Applications of Cell Culture: An Overview. , 1991, , 1-14.
6

209 Mechanism of L-alpha-methyldopa transport through a monolayer of polarized human intestinal \begin{tabular}{ll}
epithelial cells (Caco-2). Pharmaceutical Research, 1990, 07, 1313-1319.

210 \& | Use of the peptide carrier system to improve the intestinal absorption of L-alpha-methyldopa: carrier |
| :--- |
| kinetics, intestinal permeabilities, and in vitro hydrolysis of dipeptidyl derivatives of |
| L-alpha-methyldopa. Pharmaceutical Research, 1989, 06, 66-70. |

211 \& | Passive and Carrier-Mediated Intestinal Absorption Components of Captopril. Journal of |
| :--- |
| Pharmaceutical Sciences, 1988, 77, 1007-1011. |

\hline 2.5
\end{tabular}

[^0]: Source: https:/|exaly.com/author-pdf/3709675/publications.pdf
 Version: 2024-02-01

