
Ming Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3709675/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First-Pass Metabolism via UDP-Glucuronosyltransferase: a Barrier to Oral Bioavailability of Phenolics. Journal of Pharmaceutical Sciences, 2011, 100, 3655-3681.	3.3	241
2	Metabolism of Flavonoids via Enteric Recycling: Role of Intestinal Disposition. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 1228-1235.	2.5	226
3	Absorption and Metabolism of Flavonoids in the Caco-2 Cell Culture Model and a Perused Rat Intestinal Model. Drug Metabolism and Disposition, 2002, 30, 370-377.	3.3	224
4	Bioavailability Challenges Associated with Development of Anti-Cancer Phenolics. Mini-Reviews in Medicinal Chemistry, 2010, 10, 550-567.	2.4	179
5	Bioavailability and Pharmacokinetics of Genistein: Mechanistic Studies on its ADME. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 1264-1280.	1.7	167
6	<i>In Vitro</i> Assessment and Multicenter Cohort Study of Comparative Nephrotoxicity Rates Associated with Colistimethate versus Polymyxin B Therapy. Antimicrobial Agents and Chemotherapy, 2014, 58, 2740-2746.	3.2	152
7	Passive and Carrier-Mediated Intestinal Absorption Components of Captopril. Journal of Pharmaceutical Sciences, 1988, 77, 1007-1011.	3.3	144
8	Commentary: Bioavailability of Flavonoids and Polyphenols: Call to Arms. Molecular Pharmaceutics, 2007, 4, 803-806.	4.6	134
9	Metabolism of Flavonoids via Enteric Recycling: Mechanistic Studies of Disposition of Apigenin in the Caco-2 Cell Culture Model. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 314-321.	2.5	132
10	Natural polyphenol disposition via coupled metabolic pathways. Expert Opinion on Drug Metabolism and Toxicology, 2007, 3, 389-406.	3.3	119
11	Absorption and metabolism of genistein and its five isoflavone analogs in the human intestinal Caco-2 model. Cancer Chemotherapy and Pharmacology, 2005, 55, 159-169.	2.3	113
12	Poor oral bioavailability of a promising anticancer agent andrographolide is due to extensive metabolism and efflux by Pâ€glycoprotein. Journal of Pharmaceutical Sciences, 2011, 100, 5007-5017.	3.3	111
13	IDENTIFICATION OF CYP1A2 AS THE MAIN ISOFORM FOR THE PHASE I HYDROXYLATED METABOLISM OF GENISTEIN AND A PRODRUG CONVERTING ENZYME OF METHYLATED ISOFLAVONES. Drug Metabolism and Disposition, 2003, 31, 924-931.	3.3	104
14	Coupling of Conjugating Enzymes and Efflux Transporters: Impact on Bioavailability and Drug Interactions. Current Drug Metabolism, 2005, 6, 455-468.	1.2	100
15	Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/l²-catenin signaling. Oncotarget, 2016, 7, 31413-31428.	1.8	100
16	SPECIES- AND DISPOSITION MODEL-DEPENDENT METABOLISM OF RALOXIFENE IN GUT AND LIVER: ROLE OF UGT1A10. Drug Metabolism and Disposition, 2005, 33, 785-794.	3.3	98
17	Disposition of Flavonoids via Enteric Recycling: Enzyme-Transporter Coupling Affects Metabolism of Biochanin A and Formononetin and Excretion of Their Phase II Conjugates. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 1103-1113.	2.5	93
18	Intestinal Absorption Mechanisms of Prenylated Flavonoids Present in the Heat-Processed Epimedium koreanum Nakai (Yin Yanghuo). Pharmaceutical Research, 2008, 25, 2190-2199.	3.5	89

#	Article	IF	CITATIONS
19	Characterization of Polymyxin B-Induced Nephrotoxicity: Implications for Dosing Regimen Design. Antimicrobial Agents and Chemotherapy, 2012, 56, 4625-4629.	3.2	87
20	Structure and Concentration Changes Affect Characterization of UGT Isoform-Specific Metabolism of Isoflavones. Molecular Pharmaceutics, 2009, 6, 1466-1482.	4.6	85
21	Use of the peptide carrier system to improve the intestinal absorption of L-alpha-methyldopa: carrier kinetics, intestinal permeabilities, and in vitro hydrolysis of dipeptidyl derivatives of L-alpha-methyldopa. Pharmaceutical Research, 1989, 06, 66-70.	3.5	83
22	Mechanisms Responsible for Poor Oral Bioavailability of Paeoniflorin: Role of Intestinal Disposition and Interactions with Sinomenine. Pharmaceutical Research, 2006, 23, 2768-2780.	3.5	82
23	Glucuronidation: driving factors and their impact on glucuronide disposition. Drug Metabolism Reviews, 2017, 49, 105-138.	3.6	82
24	Regioselective Sulfation and Glucuronidation of Phenolics: Insights into the Structural Basis. Current Drug Metabolism, 2011, 12, 900-916.	1.2	82
25	Disposition of Naringenin via Glucuronidation Pathway Is Affected by Compensating Efflux Transporters of Hydrophilic Glucuronides. Molecular Pharmaceutics, 2009, 6, 1703-1715.	4.6	76
26	Enhancement of Oral Bioavailability of 20(<i>S</i>)-Ginsenoside Rh2 through Improved Understanding of Its Absorption and Efflux Mechanisms. Drug Metabolism and Disposition, 2011, 39, 1866-1872.	3.3	75
27	Vitexin protects dopaminergic neurons in MPTP-induced Parkinson's disease through PI3K/Akt signaling pathway. Drug Design, Development and Therapy, 2018, Volume 12, 565-573.	4.3	75
28	Severely Impaired and Dysregulated Cytochrome P450 Expression and Activities in Hepatocellular Carcinoma: Implications for Personalized Treatment in Patients. Molecular Cancer Therapeutics, 2015, 14, 2874-2886.	4.1	74
29	Disposition of Flavonoids via Enteric Recycling: Structural Effects and Lack of Correlations between in Vitro and in Situ Metabolic Properties. Drug Metabolism and Disposition, 2006, 34, 1837-1848.	3.3	72
30	Enteric Disposition and Recycling of Flavonoids and Ginkgo Flavonoids. Journal of Alternative and Complementary Medicine, 2003, 9, 631-640.	2.1	70
31	Simultaneous determination of genistein and its four phase II metabolites in blood by a sensitive and robust UPLC–MS/MS method: Application to an oral bioavailability study of genistein in mice. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53, 81-89.	2.8	70
32	Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin. Toxicology and Applied Pharmacology, 2012, 265, 316-324.	2.8	70
33	Mechanism and kinetics of transcellular transport of a new beta-lactam antibiotic loracarbef across an intestinal epithelial membrane model system (Caco-2). Pharmaceutical Research, 1994, 11, 1405-1413.	3.5	68
34	Development of Caco-2 cells expressing high levels of cDNA-derived cytochrome P4503A4. Pharmaceutical Research, 1996, 13, 1635-1641.	3.5	68
35	Disposition of Flavonoids via Recycling: Comparison of Intestinal versus Hepatic Disposition. Drug Metabolism and Disposition, 2005, 33, 1777-84.	3.3	68
36	Temporal Interplay between Efflux Pumps and Target Mutations in Development of Antibiotic Resistance in Escherichia coli. Antimicrobial Agents and Chemotherapy, 2012, 56, 1680-1685.	3.2	68

Мілс Ни

#	Article	IF	CITATIONS
37	Pharmacokinetics and Renal Disposition of Polymyxin B in an Animal Model. Antimicrobial Agents and Chemotherapy, 2012, 56, 5724-5727.	3.2	68
38	The role of efflux transporters on the transport of highly toxic aconitine, mesaconitine, hypaconitine, and their hydrolysates, as determined in cultured Caco-2 and transfected MDCKII cells. Toxicology Letters, 2013, 216, 86-99.	0.8	68
39	Mechanism of L-alpha-methyldopa transport through a monolayer of polarized human intestinal epithelial cells (Caco-2). Pharmaceutical Research, 1990, 07, 1313-1319.	3.5	67
40	Inhibition of P-Glycoprotein Leads to Improved Oral Bioavailability of Compound K, an Anticancer Metabolite of Red Ginseng Extract Produced by Gut Microflora. Drug Metabolism and Disposition, 2012, 40, 1538-1544.	3.3	66
41	Transcutaneously refillable nanofluidic implant achieves sustained level of tenofovir diphosphate for HIV pre-exposure prophylaxis. Journal of Controlled Release, 2018, 286, 315-325.	9.9	66
42	Disposition Mechanisms of Raloxifene in the Human Intestinal Caco-2 Model. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 376-385.	2.5	64
43	Mutual interactions between flavonoids and enzymatic and transporter elements responsible for flavonoid disposition via phase II metabolic pathways. RSC Advances, 2012, 2, 7948.	3.6	64
44	Breast Cancer Resistance Protein (BCRP) and Sulfotransferases Contribute Significantly to the Disposition of Genistein in Mouse Intestine. AAPS Journal, 2010, 12, 525-536.	4.4	60
45	Transport of a large neutral amino acid in a human intestinal epithelial cell line (Caco-2): uptake and efflux of phenylalanine. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1135, 233-244.	4.1	59
46	Species and Gender Differences Affect the Metabolism of Emodin via Glucuronidation. AAPS Journal, 2010, 12, 424-436.	4.4	57
47	Breast Cancer Resistance Protein (ABCG2) Determines Distribution of Genistein Phase II Metabolites: Reevaluation of the Roles of ABCG2 in the Disposition of Genistein. Drug Metabolism and Disposition, 2012, 40, 1883-1893.	3.3	57
48	Validation of IMP Dehydrogenase Inhibitors in a Mouse Model of Cryptosporidiosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 1603-1614.	3.2	56
49	Role of Intestinal Hydrolase in the Absorption of Prenylated Flavonoids Present in Yinyanghuo. Molecules, 2011, 16, 1336-1348.	3.8	55
50	Bioavailability of Polyphenols and Flavonoids in the Era of Precision Medicine. Molecular Pharmaceutics, 2017, 14, 2861-2863.	4.6	54
51	Bioavailability Challenges Associated with Development of Saponins As Therapeutic and Chemopreventive Agents. Current Drug Targets, 2012, 13, 1885-1899.	2.1	52
52	Sensitive and robust UPLC–MS/MS method to determine the gender-dependent pharmacokinetics in rats of emodin and its glucuronide. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54, 1157-1162.	2.8	50
53	Bioactivity and Bioavailability of Ginsenosides are Dependent on the Glycosidase Activities of the A/J Mouse Intestinal Microbiome Defined by Pyrosequencing. Pharmaceutical Research, 2013, 30, 836-846.	3.5	50
54	Utilization of Peptide Carrier System To Improve Intestinal Absorption: Targeting Prolidase as a Prodrug-Converting Enzyme. Journal of Pharmaceutical Sciences, 1992, 81, 113-116.	3.3	49

#	Article	IF	CITATIONS
55	Transport and metabolic characterization of Caco-2 cells expressing CYP3A4 and CYP3A4 plus oxidoreductase. Pharmaceutical Research, 1999, 16, 1352-1359.	3.5	49
56	Use of Glucuronidation Fingerprinting To Describe and Predict Mono- and Dihydroxyflavone Metabolism by Recombinant UGT Isoforms and Human Intestinal and Liver Microsomes. Molecular Pharmaceutics, 2010, 7, 664-679.	4.6	48
57	ldentification of the Position of Mono- <i>O</i> -glucuronide of Flavones and Flavonols by Analyzing Shift in Online UV Spectrum (λ _{max}) Generated from an Online Diode Array Detector. Journal of Agricultural and Food Chemistry, 2010, 58, 9384-9395.	5.2	48
58	Potential Beneficial Metabolic Interactions Between Tamoxifen and Isoflavones via Cytochrome P450-mediated Pathways in Female Rat Liver Microsomes. Pharmaceutical Research, 2004, 21, 2095-2104.	3.5	47
59	Uptake of Polymyxin B into Renal Cells. Antimicrobial Agents and Chemotherapy, 2014, 58, 4200-4202.	3.2	47
60	Mechanisms of transport of quinapril in Caco-2 cell monolayers: comparison with cephalexin. Pharmaceutical Research, 1995, 12, 1120-1125.	3.5	46
61	Disposition of Flavonoids via Enteric Recycling: Determination of the UDP-Glucuronosyltransferase Isoforms Responsible for the Metabolism of Flavonoids in Intact Caco-2 TC7 Cells Using siRNA. Molecular Pharmaceutics, 2007, 4, 873-882.	4.6	46
62	Transformation of Ginsenosides from Notoginseng by Artificial Gastric Juice Can Increase Cytotoxicity toward Cancer Cells. Journal of Agricultural and Food Chemistry, 2014, 62, 2558-2573.	5.2	46
63	In Vivo Pharmacokinetics of Hesperidin Are Affected by Treatment with Glucosidase-like BglA Protein Isolated from Yeasts. Journal of Agricultural and Food Chemistry, 2008, 56, 5550-5557.	5.2	44
64	Biopharmaceutical and pharmacokinetic characterization of matrine as determined by a sensitive and robust UPLC–MS/MS method. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 1120-1127.	2.8	44
65	Triple Recycling Processes Impact Systemic and Local Bioavailability of Orally Administered Flavonoids. AAPS Journal, 2015, 17, 723-736.	4.4	44
66	Disposition of Flavonoids via Enteric Recycling: UDP-Glucuronosyltransferase (UGT) 1As Deficiency in Gunn Rats Is Compensated by Increases in UGT2Bs Activities. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 1023-1031.	2.5	43
67	Mechanisms and Kinetics of Uptake and Efflux of L-Methionine in an Intestinal Epithelial Model (Caco-2). Journal of Nutrition, 1994, 124, 1907-1916.	2.9	42
68	Disposition of Formononetin via Enteric Recycling:  Metabolism and Excretion in Mouse Intestinal Perfusion and Caco-2 Cell Models. Molecular Pharmaceutics, 2005, 2, 319-328.	4.6	42
69	Discovery and Characterization of Dual Inhibitors of MDM2 and NFAT1 for Pancreatic Cancer Therapy. Cancer Research, 2018, 78, 5656-5667.	0.9	42
70	Ginsenoside Rb1 Directly Scavenges Hydroxyl Radical and Hypochlorous Acid. Current Pharmaceutical Design, 2012, 18, 6339-6347.	1.9	41
71	Regioselective Glucuronidation of Flavonols by Six Human UGT1A Isoforms. Pharmaceutical Research, 2011, 28, 1905-1918.	3.5	40
72	Amino acid facilitates absorption of copper in the Caco-2 cell culture model. Life Sciences, 2014, 109, 50-56.	4.3	40

Мілд Ни

#	Article	IF	CITATIONS
73	Significantly Decreased and More Variable Expression of Major CYPs and UGTs in Liver Microsomes Prepared from HBV-Positive Human Hepatocellular Carcinoma and Matched Pericarcinomatous Tissues Determined Using an Isotope Label-free UPLC-MS/MS Method. Pharmaceutical Research, 2015, 32, 1141-1157.	3.5	40
74	Disposition of Flavonoids Impacts their Efficacy and Safety. Current Drug Metabolism, 2015, 15, 841-864.	1.2	40
75	Disposition of Flavonoids via Enteric Recycling: Enzyme Stability Affects Characterization of Prunetin Glucuronidation across Species, Organs, and UGT Isoforms. Molecular Pharmaceutics, 2007, 4, 883-894.	4.6	39
76	Systematic Studies of Sulfation and Glucuronidation of 12 Flavonoids in the Mouse Liver S9 Fraction Reveal both Unique and Shared Positional Preferences. Journal of Agricultural and Food Chemistry, 2012, 60, 3223-3233.	5.2	39
77	Three-Dimensional Quantitative Structure-Activity Relationship Studies on UGT1A9-Mediated 3-O-Glucuronidation of Natural Flavonols Using a Pharmacophore-Based Comparative Molecular Field Analysis Model. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 403-413.	2.5	38
78	A validated ultra-performance liquid chromatography-tandem mass spectrometry method for the quantification of polymyxin B in mouse serum and epithelial lining fluid: application to pharmacokinetic studies. Journal of Antimicrobial Chemotherapy, 2013, 68, 1104-1110.	3.0	38
79	Determination of Pharmacokinetics of Chrysin and Its Conjugates in Wild-Type FVB and Bcrp1 Knockout Mice Using a Validated LC-MS/MS Method. Journal of Agricultural and Food Chemistry, 2015, 63, 2902-2910.	5.2	38
80	Use of Isoform-Specific UGT Metabolism to Determine and Describe Rates and Profiles of Glucuronidation of Wogonin and Oroxylin A by Human Liver and Intestinal Microsomes. Pharmaceutical Research, 2010, 27, 1568-1583.	3.5	37
81	<i>In Vitro</i> Potency of Various Polymyxin B Components. Antimicrobial Agents and Chemotherapy, 2011, 55, 4490-4491.	3.2	37
82	UDP-Glucuronosyltransferase (UGT) 1A9-Overexpressing HeLa Cells Is an Appropriate Tool to Delineate the Kinetic Interplay between Breast Cancer Resistance Protein (BRCP) and UGT and to Rapidly Identify the Glucuronide Substrates of BCRP. Drug Metabolism and Disposition, 2012, 40, 336-345.	3.3	37
83	Substrate selectivity of drug-metabolizing cytochrome P450s predicted from crystal structures and <i>in silico</i> modeling. Drug Metabolism Reviews, 2012, 44, 192-208.	3.6	37
84	Variable Isoflavone Content of Red Clover Products Affects Intestinal Disposition of Biochanin A, Formononetin, Genistein, and Daidzein. Journal of Alternative and Complementary Medicine, 2008, 14, 287-297.	2.1	36
85	In Vivo Exposure of Kaempferol Is Driven by Phase II Metabolic Enzymes and Efflux Transporters. AAPS Journal, 2016, 18, 1289-1299.	4.4	35
86	Quantitative Prediction of Glucuronidation in Humans Using the In Vitro- In Vivo Extrapolation Approach. Current Topics in Medicinal Chemistry, 2013, 13, 1343-1352.	2.1	35
87	A Novel Local Recycling Mechanism That Enhances Enteric Bioavailability of Flavonoids and Prolongs Their Residence Time in the Gut. Molecular Pharmaceutics, 2012, 9, 3246-3258.	4.6	34
88	Disposition of flavonoids via recycling: Direct biliary excretion of enterically or extrahepatically derived flavonoid glucuronides. Molecular Nutrition and Food Research, 2016, 60, 1006-1019.	3.3	34
89	Novel histone deacetylase inhibitors derived from Magnolia officinalis significantly enhance TRAIL-induced apoptosis in non-small cell lung cancer. Pharmacological Research, 2016, 111, 113-125.	7.1	34
90	Metabolic Disposition of Luteolin Is Mediated by the Interplay of UDP-Glucuronosyltransferases and Catechol- <i>O</i> -Methyltransferases in Rats. Drug Metabolism and Disposition, 2017, 45, 306-315.	3.3	34

#	Article	IF	CITATIONS
91	Curcumin Affects Phase II Disposition of Resveratrol Through Inhibiting Efflux Transporters MRP2 and BCRP. Pharmaceutical Research, 2016, 33, 590-602.	3.5	33
92	Determination of Absorption Characteristics of AG337, a Novel Thymidylate Synthase Inhibitor, Using a Perfused Rat Intestinal Model. Journal of Pharmaceutical Sciences, 1998, 87, 886-890.	3.3	30
93	Analysis of drug transport and metabolism in cell monolayer systems that have been modified by cytochrome P4503A4 cDNA-expression. European Journal of Pharmaceutical Sciences, 2000, 12, 63-68.	4.0	29
94	Understanding substrate selectivity of human UDP-glucuronosyltransferases through QSAR modeling and analysis of homologous enzymes. Xenobiotica, 2012, 42, 808-820.	1.1	29
95	Comparison of Uptake Characteristics of Thymidine and Zidovudine in a Human intestinal Epithelial Model System. Journal of Pharmaceutical Sciences, 1993, 82, 829-833.	3.3	28
96	Uridine Diphosphate Glucuronosyltransferase Isoform-Dependent Regiospecificity of Glucuronidation of Flavonoids. Journal of Agricultural and Food Chemistry, 2011, 59, 7452-7464.	5.2	28
97	Factors Influencing Oral Bioavailability of Thai Mango Seed Kernel Extract and Its Key Phenolic Principles. Molecules, 2015, 20, 21254-21273.	3.8	28
98	Development and validation of an UPLC–MS/MS method for the quantification of irinotecan, SN-38 and SN-38 glucuronide in plasma, urine, feces, liver and kidney: Application to a pharmacokinetic study of irinotecan in rats. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1015-1016, 34-41.	2.3	28
99	A combined strategy of mass fragmentation, post-column cobalt complexation and shift in ultraviolet absorption spectra to determine the uridine 5′-diphospho-glucuronosyltransferase metabolism profiling of flavones after oral administration of a flavone mixture in rats. Journal of Chromatography A. 2015. 1395. 116-128.	3.7	27
100	SULT1A3-Mediated Regiospecific 7-O-Sulfation of Flavonoids in Caco-2 Cells Can Be Explained by the Relevant Molecular Docking Studies. Molecular Pharmaceutics, 2012, 9, 862-873.	4.6	26
101	Challenges and Opportunities with Predicting In Vivo Phase II Metabolism via Glucuronidation From In Vitro Data. Current Pharmacology Reports, 2016, 2, 326-338.	3.0	26
102	P-Glycoprotein and Bioavailability-Implication of Polymorphism. Clinical Chemistry and Laboratory Medicine, 2000, 38, 877-81.	2.3	25
103	Comparison of the transport characteristics of D- and L-methionine in a human intestinal epithelial model (Caco-2) and in a perfused rat intestinal model. Pharmaceutical Research, 1994, 11, 1771-1776.	3.5	24
104	Highly Variable Contents of Phenolics in St. John's Wort Products Affect Their Transport in the Human Intestinal Caco-2 Cell Model: Pharmaceutical and Biopharmaceutical Rationale for Product Standardization. Journal of Agricultural and Food Chemistry, 2010, 58, 6650-6659.	5.2	24
105	The exposure of highly toxic aconitine does not significantly impact the activity and expression of cytochrome P450 3A in rats determined by a novel ultra performance liquid chromatography–tandem mass spectrometric method of a specific probe buspirone. Food and Chemical Toxicology, 2013, 51, 396-403.	3.6	24
106	Absolute quantification of UGT1A1 in various tissues and cell lines using isotope label-free UPLC–MS/MS method determines its turnover number and correlates with its glucuronidation activities. Journal of Pharmaceutical and Biomedical Analysis, 2014, 88, 180-190.	2.8	24
107	Species―and genderâ€dependent differences in the glucuronidation of a flavonoid glucoside and its aglycone determined using expressed UGT enzymes and microsomes. Biopharmaceutics and Drug Disposition, 2015, 36, 622-635.	1.9	24
108	Kinetic Characterization of Secretory Transport of a New Ciprofloxacin Derivative (CNV97100) across Caco-2 Cell Monolayers**This work has been submitted for the partial fulfillment of the requirement for a Ph.D. Degree in Pharmaceutics at the University of Valencia, Valencia, Spain. Journal of Pharmaceutical Sciences, 2002, 91, 2511-2519.	3.3	23

Мілс Ни

#	Article	IF	CITATIONS
109	Quality, Labeling Accuracy, and Cost Comparison of Purified Soy Isoflavonoid Products. Journal of Alternative and Complementary Medicine, 2004, 10, 1053-1060.	2.1	23
110	SGLT-1 Transport and Deglycosylation inside Intestinal Cells Are Key Steps in the Absorption and Disposition of Calycosin-7-O-Â-D-Glucoside in Rats. Drug Metabolism and Disposition, 2016, 44, 283-296.	3.3	23
111	Potential of herb-drug / herb interactions between substrates and inhibitors of UGTs derived from herbal medicines. Pharmacological Research, 2019, 150, 104510.	7.1	23
112	Chemopreventive effect of a mixture of Chinese Herbs (antitumor B) on chemically induced oral carcinogenesis. Molecular Carcinogenesis, 2013, 52, 49-56.	2.7	22
113	Breast Cancer Resistance Protein-Mediated Efflux of Luteolin Glucuronides in HeLa Cells Overexpressing UDP-Glucuronosyltransferase 1A9. Pharmaceutical Research, 2014, 31, 847-860.	3.5	22
114	Development and validation of a highly sensitive UPLC-MS/MS method for simultaneous determination of aconitine, mesaconitine, hypaconitine, and five of their metabolites in rat blood and its application to a pharmacokinetics study of aconitine, mesaconitine, and hypaconitine. Xenobiotica, 2012, 42, 518-525.	1.1	21
115	Sulfation of selected mono-hydroxyflavones by sulfotransferases <i>in vitro</i> : a species and gender comparison. Journal of Pharmacy and Pharmacology, 2011, 63, 967-970.	2.4	20
116	Revolving Door Action of Breast Cancer Resistance Protein (BCRP) Facilitates or Controls the Efflux of Flavone Glucuronides from UGT1A9-Overexpressing HeLa Cells. Molecular Pharmaceutics, 2013, 10, 1736-1750.	4.6	20
117	A validated liquid chromatography–tandem mass spectrometry method for the determination of methyl gallate and pentagalloyl glucopyranose: Application to pharmacokinetic studies. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 986-987, 12-17.	2.3	20
118	Development and validation of a sensitive LC–MS/MS method for simultaneous determination of eight tyrosine kinase inhibitors and its application in mice pharmacokinetic studies. Journal of Pharmaceutical and Biomedical Analysis, 2018, 148, 65-72.	2.8	20
119	Potential role of drug metabolizing enzymes in chemotherapy-induced gastrointestinal toxicity and hepatotoxicity. Expert Opinion on Drug Metabolism and Toxicology, 2020, 16, 1109-1124.	3.3	20
120	Evaluation of 3,3′,4′-Trihydroxyflavone and 3,6,4′-Trihydroxyflavone (4′- <i>O</i> -Glucuronidation) as 1 in Vitro Functional Markers for Hepatic UGT1A1. Molecular Pharmaceutics, 2011, 8, 2379-2389.	the 4.6	19
121	Reductive metabolism of oxymatrine is catalyzed by microsomal CYP3A4. Drug Design, Development and Therapy, 2015, 9, 5771.	4.3	19
122	Developing an activity and absorption-based quality control platform for Chinese traditional medicine: Application to Zeng-Sheng-Ping(Antitumor B). Journal of Ethnopharmacology, 2015, 172, 195-201.	4.1	19
123	Simultaneous determinations of 17 marker compounds in Xiao–Chai–Hu–Tang by LC–MS/MS: Application to its pharmacokinetic studies in mice. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 1003, 12-21.	2.3	19
124	Irinotecan-mediated diarrhea is mainly correlated with intestinal exposure to SN-38: Critical role of gut Ugt. Toxicology and Applied Pharmacology, 2020, 398, 115032.	2.8	19
125	The Pharmacokinetics of Raloxifene and Its Interaction with Apigenin in Rat. Molecules, 2010, 15, 8478-8487.	3.8	18
126	An update on polyphenol disposition via coupled metabolic pathways. Expert Opinion on Drug Metabolism and Toxicology, 2019, 15, 151-165.	3.3	18

#	Article	IF	CITATIONS
127	Chronic Alcohol Consumption Increased Bile Acid Levels in Enterohepatic Circulation and Reduced Efficacy of Irinotecan. Alcohol and Alcoholism, 2020, 55, 264-277.	1.6	18
128	Determination of osthol and its metabolites in a phase I reaction system and the Caco-2 cell model by HPLC-UV and LC–MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2009, 49, 1226-1232.	2.8	17
129	Validated LC–MS/MS method for the determination of maackiain and its sulfate and glucuronide in blood: Application to pharmacokinetic and disposition studies. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 288-293.	2.8	17
130	Taurine inhibition of metal-stimulated catecholamine oxidation. Neurotoxicity Research, 2000, 2, 1-15.	2.7	16
131	Use of Caco-2 Cell Monolayers to Study Drug Absorption and Metabolism. , 2004, , 19-35.		16
132	Accurate Prediction of Glucuronidation of Structurally Diverse Phenolics by Human UGT1A9 Using Combined Experimental and In Silico Approaches. Pharmaceutical Research, 2012, 29, 1544-1561.	3.5	16
133	Metabolism of Phenolic Compounds in LPS-stimulated Raw264.7 Cells Can Impact Their Anti-inflammatory efficacy: Indication of Hesperetin. Journal of Agricultural and Food Chemistry, 2018, 66, 6042-6052.	5.2	16
134	Magnolia extract is effective for the chemoprevention of oral cancer through its ability to inhibit mitochondrial respiration at complex I. Cell Communication and Signaling, 2020, 18, 58.	6.5	16
135	LC-MS/MS quantification of sulfotransferases is better than conventional immunogenic methods in determining human liver SULT activities: implication in precision medicine. Scientific Reports, 2017, 7, 3858.	3.3	15
136	An LC–MS/MS method for simultaneous determination of nine steroidal saponins from Paris polyphylla var. in rat plasma and its application to pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis, 2017, 145, 675-681.	2.8	15
137	UGT1A1 dysfunction increases liver burden and aggravates hepatocyte damage caused by long-term bilirubin metabolism disorder. Biochemical Pharmacology, 2021, 190, 114592.	4.4	15
138	Functional and Molecular Characterization of Rat Intestinal Prolidase. Pediatric Research, 2003, 53, 905-914.	2.3	14
139	Insight into tartrate inhibition patterns in vitro and in vivo based on cocrystal structure with UDP-glucuronosyltransferase 2B15. Biochemical Pharmacology, 2020, 172, 113753.	4.4	14
140	Receptor-interacting protein kinase 2 (RIPK2) and nucleotide-binding oligomerization domain (NOD) cell signaling inhibitors based on a 3,5-diphenyl-2-aminopyridine scaffold. European Journal of Medicinal Chemistry, 2020, 200, 112417.	5.5	14
141	A New Strategy to Rapidly Evaluate Kinetics of Glucuronide Efflux by Breast Cancer Resistance Protein (BCRP/ABCG2). Pharmaceutical Research, 2012, 29, 3199-3208.	3.5	13
142	Mutual Regioselective Inhibition of Human UGT1A1-Mediated Glucuronidation of Four Flavonoids. Molecular Pharmaceutics, 2013, 10, 2891-2903.	4.6	13
143	Characterization of Oxygenated Metabolites of Ginsenoside Rb1 in Plasma and Urine of Rat. Journal of Agricultural and Food Chemistry, 2015, 63, 2689-2700.	5.2	13
144	Quantitation of celecoxib and four of its metabolites in rat blood by UPLC-MS/MS clarifies their blood distribution patterns and provides more accurate pharmacokinetics profiles. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 1001, 202-211.	2.3	13

Мінс Ни

#	ARTICLE	IF	CITATIONS
145	Development of a validated UPLC–MS/MS method for determination of humantenmine in rat plasma and its application in pharmacokinetics and bioavailability studies. Biomedical Chromatography, 2017, 31, e4017.	1.7	13
146	Lispro Insulin: Adsorption and Stability in Selected Intravenous Devices. The Diabetes Educator, 1999, 25, 237-245.	2.5	12
147	Effects of Estrogen and Estrus Cycle on Pharmacokinetics, Absorption, and Disposition of Genistein in Female Sprague–Dawley Rats. Journal of Agricultural and Food Chemistry, 2012, 60, 7949-7956.	5.2	12
148	Gender-dependent differences in uridine 5'-diphospho-glucuronosyltransferase have implications in metabolism and clearance of xenobiotics. Expert Opinion on Drug Metabolism and Toxicology, 2013, 9, 1555-1569.	3.3	12
149	Inhibition of Human UGT1A1-Mediated Bilirubin Glucuronidation by Polyphenolic Acids Impact Safety of Popular Salvianolic Acid A/B-Containing Drugs and Herbal Products. Molecular Pharmaceutics, 2017, 14, 2952-2966.	4.6	12
150	An UPLC-MS/MS method for quantifying tetrandrine and its metabolite berbamine in human blood: Application to a human pharmacokinetic study. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1070, 92-96.	2.3	12
151	UDP-Clucuronosyltransferases 1A6 and 1A9 are the Major Isozymes Responsible for the 7- <i>O</i> -Glucuronidation of Esculetin and 4-Methylesculetin in Human Liver Microsomes. Drug Metabolism and Disposition, 2015, 43, 977-983.	3.3	11
152	Characterization of oxygenated metabolites of ginsenoside Rg 1 in plasma and urine of rat. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1026, 75-86.	2.3	11
153	Metabolic profiles of Xiao Chai Hu Tang in mouse plasma, bile and urine by the UHPLC–ESI-Q-TOF/MS technique. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1128, 121767.	2.3	11
154	Pharmacokinetic and Metabolic Profiling of Key Active Components of Dietary Supplement <i>Magnolia officinalis</i> Extract for Prevention against Oral Carcinoma. Journal of Agricultural and Food Chemistry, 2020, 68, 6576-6587.	5.2	11
155	One-Step Transformation from Rofecoxib to a COX-2 NIR Probe for Human Cancer Tissue/Organoid Targeted Bioimaging. ACS Applied Bio Materials, 2021, 4, 2723-2731.	4.6	11
156	A novel strategy for screening bioavailable quality markers of traditional Chinese medicine by integrating intestinal absorption and network pharmacology: Application to Wu Ji Bai Feng Pill. Phytomedicine, 2020, 76, 153226.	5.3	11
157	Sulfotransferases and Breast Cancer Resistance Protein Determine the Disposition of Calycosin <i>in Vitro</i> and <i>in Vivo</i> . Molecular Pharmaceutics, 2017, 14, 2917-2929.	4.6	10
158	Simultaneous determination of tilianin and its metabolites in mice using ultraâ€highâ€performance liquid chromatography with tandem mass spectrometry and its application to a pharmacokinetic study. Biomedical Chromatography, 2018, 32, e4139.	1.7	10
159	Impact of diet on irinotecan toxicity in mice. Chemico-Biological Interactions, 2018, 291, 87-94.	4.0	10
160	Development of Rofecoxib-Based Fluorescent Probes and Investigations on Their Solvatochromism, AlE Activity, Mechanochromism, and COX-2-Targeted Bioimaging. Analytical Chemistry, 2021, 93, 11991-12000.	6.5	10
161	Disordered farnesoid <scp>X</scp> receptor signaling is associated with liver carcinogenesis in <scp><i>Abcb11</i></scp> â€deficient mice. Journal of Pathology, 2021, 255, 412-424.	4.5	10
162	Peptide Transporter Function and Prolidase Activities in Caco-2 Cells: A Lack of Coordinated Expression. Journal of Drug Targeting, 1995, 3, 291-300.	4.4	9

#	Article	IF	CITATIONS
163	Establishment and use of new MDCK II cells overexpressing both UGT1A1 and MRP2 to characterize flavonoid metabolism via the glucuronidation pathway. Molecular Nutrition and Food Research, 2016, 60, 1967-1983.	3.3	9
164	Determination of 7α-OH cholesterol by LC–MS/MS: Application in assessing the activity of CYP7A1 in cholestatic minipigs. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1025, 76-82.	2.3	9
165	Profiles and Gender-Specifics of UDP-Glucuronosyltransferases and Sulfotransferases Expressions in the Major Metabolic Organs of Wild-Type and Efflux Transporter Knockout FVB Mice. Molecular Pharmaceutics, 2017, 14, 2967-2976.	4.6	9
166	Tissue Distribution and Gender-Specific Protein Expression of Cytochrome P450 in five Mouse Genotypes with a Background of FVB. Pharmaceutical Research, 2018, 35, 114.	3.5	9
167	Intestinal Excretion, Intestinal Recirculation, and Renal Tubule Reabsorption Are Underappreciated Mechanisms That Drive the Distribution and Pharmacokinetic Behavior of Small Molecule Drugs. Journal of Medicinal Chemistry, 2021, 64, 7045-7059.	6.4	9
168	Uptake Characteristics of Loracarbef and Cephalexin in the Caco-2 Cell Culture Model: Effects of the Proton Gradient and Possible Presence of a Distinctive Second Component. Journal of Pharmaceutical Sciences, 1996, 85, 767-772.	3.3	8
169	InÂvitro glucuronidation of methyl gallate and pentagalloyl glucopyranose by liver microsomes. Drug Metabolism and Pharmacokinetics, 2016, 31, 292-303.	2.2	8
170	Transport–Glucuronidation Classification System and PBPK Modeling: New Approach To Predict the Impact of Transporters on Disposition of Glucuronides. Molecular Pharmaceutics, 2017, 14, 2884-2898.	4.6	8
171	Breast Cancer Resistance Protein and Multidrug Resistance Protein 2 Regulate the Disposition of Acacetin Glucuronides. Pharmaceutical Research, 2017, 34, 1402-1415.	3.5	8
172	High-Throughput and Reliable Isotope Label-free Approach for Profiling 24 Metabolic Enzymes in FVB Mice and Sex Differences. Drug Metabolism and Disposition, 2017, 45, 624-634.	3.3	8
173	Accurate quantification of PGE 2 in the polyposis in rat colon (Pirc) model by surrogate analyte-based UPLC–MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2018, 148, 42-50.	2.8	8
174	Xiao-Chai-Hu-Tang (XCHT) Intervening Irinotecan's Disposition: The Potential of XCHT in Alleviating Irinotecan-Induced Diarrhea. Current Cancer Drug Targets, 2019, 19, 551-560.	1.6	8
175	Oral Absorption Basics. , 2009, , 263-288.		7
176	Rapid intestinal glucuronidation and hepatic glucuronide recycling contributes significantly to the enterohepatic circulation of icaritin and its glucuronides in vivo. Archives of Toxicology, 2020, 94, 3737-3749.	4.2	7
177	Design and Synthesis of a Novel NIR Celecoxib-Based Fluorescent Probe for Cyclooxygenase-2 Targeted Bioimaging in Tumor Cells. Molecules, 2020, 25, 4037.	3.8	7
178	Development and validation of an LC-MS/MS method for the quantification of flavonoid glucuronides (wogonoside, baicalin, and apigenin-glucuronide) in the bile and blood samples: Application to a portal vein infusion study. Analytical Biochemistry, 2020, 601, 113723.	2.4	7
179	Nucleobase- and p-Glycoprotein-Mediated Transport of AG337 in a Caco-2 Cell Culture Model. Molecular Pharmaceutics, 2004, 1, 194-200.	4.6	6
180	Breast Cancer Resistance Protein and Multidrug Resistance Protein 2 Determine the Disposition of Esculetin-7-O-Glucuronide and 4-Methylesculetin-7-O-Glucuronide. Drug Metabolism and Disposition, 2019, 47, 203-214.	3.3	6

#	Article	IF	CITATIONS
181	Development and validation of ultraâ€highâ€performance liquid chromatography–mass spectrometry method for the determination of raloxifene and its phase II metabolites in plasma: Application to pharmacokinetic studies in rats. Journal of Separation Science, 2020, 43, 4414-4423.	2.5	6
182	Hepatoenteric recycling is a new disposition mechanism for orally administered phenolic drugs and phytochemicals in rats. ELife, 2021, 10, .	6.0	6
183	Pharmacokinetic Characterization and Bioavailability Barrier for the Key Active Components of Botanical Drug Antitumor B (ATB) in Mice for Chemoprevention of Oral Cancer. Journal of Natural Products, 2021, 84, 2486-2495.	3.0	6
184	Pharmaceutical Applications of Cell Culture: An Overview. , 1991, , 1-14.		6
185	The Influences of Aconitine, an Active/Toxic Alkaloid from Aconitum, on the Oral Pharmacokinetics of CYP3A Probe Drug Buspirone in Rats. Drug Metabolism Letters, 2015, 8, 135-144.	0.8	6
186	Validated LC–MS/MS method for the determination of 3-hydroxflavone and its glucuronide in blood and bioequivalent buffers: Application to pharmacokinetic, absorption, and metabolism studies. Journal of Pharmaceutical and Biomedical Analysis, 2013, 85, 245-252.	2.8	5
187	In Vitro Pharmacodynamics of AZD5206 against Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2013, 57, 1062-1064.	3.2	5
188	A Useful Microsoft Excel Add-in Program for Modeling Steady-state Enzyme Kinetics. Pharmaceutica Analytica Acta, 2012, 01, .	0.2	5
189	The role of gut microbial β-glucuronidase in drug disposition and development. Drug Discovery Today, 2022, 27, 103316.	6.4	5
190	Disposition of Flavonoids for Personal Intake. Current Pharmacology Reports, 2017, 3, 196-212.	3.0	4
191	Ageâ€related changes in hepatic expression and activity of drug metabolizing enzymes in male wildâ€type and breast cancer resistance protein knockout mice. Biopharmaceutics and Drug Disposition, 2018, 39, 344-353.	1.9	4
192	Acute changes in colonic PGE2 levels as a biomarker of efficacy after treatment of the Pirc (F344/NTac-ApcÂam1137) rat with celecoxib. Inflammation Research, 2020, 69, 131-137.	4.0	4
193	Glucuronides Hydrolysis by Intestinal Microbial β-Glucuronidases (GUS) Is Affected by Sampling, Enzyme Preparation, Buffer pH, and Species. Pharmaceutics, 2021, 13, 1043.	4.5	4
194	SIRT1 inhibitionâ€induced senescence as a strategy to prevent prostate cancer progression. Molecular Carcinogenesis, 2022, 61, 702-716.	2.7	4
195	Development and validation of an UPLC-MS/MS method for the quantification of ethoxzolamide in blood, brain tissue, and bioequivalent buffers: Applications to absorption, brain distribution, and pharmacokinetic studies. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2015. 986-987. 54-59.	2.3	3
196	Interplay of Efflux Transporters with Glucuronidation and Its Impact on Subcellular Aglycone and Glucuronide Disposition: A Case Study with Kaempferol. Molecular Pharmaceutics, 2018, 15, 5602-5614.	4.6	3
197	Development of Rofecoxibâ€Based Fluorophores from ACQ to AIE by Positional Regioisomerization. ChemPlusChem, 2022, 87, e202100522.	2.8	3
198	Irinotecan decreases intestinal UDP-glucuronosyltransferase (UGT) 1A1 via TLR4/MyD88 pathway prior to the onset of diarrhea. Food and Chemical Toxicology, 2022, 166, 113246.	3.6	3

#	Article	IF	CITATIONS
199	Development and validation of an UPLC-MS/MS method for the quantification of columbin in biological matrices: Applications to absorption, metabolism, and pharmacokinetic studies. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 1002, 13-18.	2.3	2
200	Bioavailability and Pharmacokinetics of Dihydroartemisinin (DHA) and its Analogs—Mechanistic Studies on its ADME. Current Pharmacology Reports, 2018, 4, 33-44.	3.0	2
201	Flavonoids interference in common protein assays: Effect of position and degree of hydroxyl substitution. Analytical Biochemistry, 2020, 597, 113644.	2.4	2
202	Meet Our Editor-in-Chief. Current Drug Metabolism, 2021, 22, 1-1.	1.2	2
203	Response to Letter to the Editor on "Breast Cancer Resistance Protein (ABCC2) Determines Distribution of Genistein Phase II Metabolites: Reevaluation of the Roles of ABCG2 in the Disposition of Genistein― Drug Metabolism and Disposition, 2012, 40, 2219.2-2220.	3.3	1
204	Response to Comment on Uridine Diphosphate Glucuronosyltransferase Isoform-Dependent Regiospecificity of Glucuronidation of Flavonoids. Journal of Agricultural and Food Chemistry, 2012, 60, 4420-4421.	5.2	1
205	The Function of Multidrug Resistance-associated Protein 3 in the Transport of Bile Acids under Normal Physiological and Lithocholic Acid-induced Cholestasis Conditions. Current Drug Metabolism, 2021, 22, 353-362.	1.2	1
206	A positive–negative switching LC-MS/MS method for quantification of fenoldopam and its phase II metabolites: Applications to a pharmacokinetic study in rats. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1179, 122854.	2.3	1
207	Wiley Series in Drug Discovery and Development. , 2011, , 541-542.		Ο
208	Role of Bacterial Translocation in the Progressive and Delayed Irinotecan Induced Diarrhea , 2018, 08, \cdot		0
209	Parallel guidewire technique in acute ischemic stroke secondary to carotid artery dissection. Annals of Palliative Medicine, 2021, 10, 266-277.	1.2	0
210	Age-and Region-Dependent Disposition of Raloxifene in Rats. Pharmaceutical Research, 2021, 38, 1357-1367.	3.5	0
211	Overexpression of MRP3 in HeLa-UGT1A9 Cells Enhances Glucuronidation Capability of the Cells. Current Drug Metabolism, 2021, 22, .	1.2	0