
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3708664/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immuno-metabolic interfaces in cardiac disease and failure. Cardiovascular Research, 2022, 118, 37-52.	3.8	6
2	Loss of autophagy protein ATG5 impairs cardiac capacity in mice and humans through diminishing mitochondrial abundance and disrupting Ca2+ cycling. Cardiovascular Research, 2022, 118, 1492-1505.	3.8	18
3	Metabolic alterations in a rat model of takotsubo syndrome. Cardiovascular Research, 2022, 118, 1932-1946.	3.8	31
4	Mechanoâ€energetic aspects of Barth syndrome. Journal of Inherited Metabolic Disease, 2022, 45, 82-98.	3.6	4
5	A systematic review and meta-analysis of murine models of uremic cardiomyopathy. Kidney International, 2022, 101, 256-273.	5.2	13
6	Mitochondria as Therapeutic Targets in Heart Failure. Current Heart Failure Reports, 2022, 19, 27-37.	3.3	23
7	Rethinking Mitchell's Chemiosmotic Theory: Potassium Dominates Over Proton Flux to Drive Mitochondrial F1Fo-ATP Synthase. Function, 2022, 3, zqac012.	2.3	3
8	Cereblon, a novel target in heart failure: but is calcium really everything?. European Heart Journal, 2022, , .	2.2	1
9	Targeted therapies for cardiac diseases. Nature Reviews Cardiology, 2022, 19, 343-344.	13.7	3
10	Repeated exposure to transient obstructive sleep apnea–related conditions causes an atrial fibrillation substrate in a chronic rat model. Heart Rhythm, 2021, 18, 455-464.	0.7	26
11	Mitochondrial ROS and mitochondria-targeted antioxidants in the aged heart. Free Radical Biology and Medicine, 2021, 167, 109-124.	2.9	55
12	Medical treatment of heart failure with reduced ejection fraction: the dawn of a new era of personalized treatment?. European Heart Journal - Cardiovascular Pharmacotherapy, 2021, 7, 539-546.	3.0	22
13	Grandfather's moonlighting: hydralazine's novel liaison with mitochondria. Cardiovascular Research, 2021, , .	3.8	2
14	Haematopoietic and cardiac GPR55 synchronize post-myocardial infarction remodelling. Scientific Reports, 2021, 11, 14385.	3.3	7
15	A pathophysiological compass to personalize antianginal drug treatment. Nature Reviews Cardiology, 2021, 18, 838-852.	13.7	15
16	Pharmacological inhibition of GLUT1 as a new immunotherapeutic approach after myocardial infarction. Biochemical Pharmacology, 2021, 190, 114597.	4.4	12
17	Redox signaling in heart failure and therapeutic implications. Free Radical Biology and Medicine, 2021, 171, 345-364.	2.9	26
18	The α2-isoform of the Na ⁺ /K ⁺ -ATPase protects against pathological remodeling and β-adrenergic desensitization after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H650-H662.	3.2	12

#	Article	IF	CITATIONS
19	Loss of Mitochondrial Ca ²⁺ Uniporter Limits Inotropic Reserve and Provides Trigger and Substrate for Arrhythmias in Barth Syndrome Cardiomyopathy. Circulation, 2021, 144, 1694-1713.	1.6	30
20	Let's face the fats: palmitate restores cellular redox state in the diabetic heart. Journal of Physiology, 2020, 598, 1283-1284.	2.9	2
21	CaMKII does not control mitochondrial Ca ²⁺ uptake in cardiac myocytes. Journal of Physiology, 2020, 598, 1361-1376.	2.9	31
22	Response to â€The possible role of insulin and glucagon in patients with heart failure and Type 2 diabetes'. European Heart Journal, 2020, 41, 326-327.	2.2	1
23	How low should we go on low-carbohydrate diets?. European Heart Journal, 2020, 41, 1057-1057.	2.2	1
24	Cathepsin A contributes to left ventricular remodeling by degrading extracellular superoxide dismutase in mice. Journal of Biological Chemistry, 2020, 295, 12605-12617.	3.4	10
25	The endothelium as Achilles' heel in COVID-19 patients. Cardiovascular Research, 2020, 116, e195-e197.	3.8	14
26	Cellular and mitochondrial mechanisms of atrial fibrillation. Basic Research in Cardiology, 2020, 115, 72.	5.9	62
27	Selective NADH communication from α-ketoglutarate dehydrogenase to mitochondrial transhydrogenase prevents reactive oxygen species formation under reducing conditions in the heart. Basic Research in Cardiology, 2020, 115, 53.	5.9	28
28	REPORT-HF reveals global inequalities in health care provision and prognosis of patients with acute heart failure. Cardiovascular Research, 2020, 116, e112-e114.	3.8	2
29	Cancer Mortality in Trials of Heart Failure With Reduced Ejection Fraction: A Systematic Review and Metaâ€Analysis. Journal of the American Heart Association, 2020, 9, e016309.	3.7	23
30	Regulation of titin-based cardiac stiffness by unfolded domain oxidation (UnDOx). Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24545-24556.	7.1	37
31	Mitochondria Do Not Survive Calcium Overload During Transplantation. Circulation Research, 2020, 126, 784-786.	4.5	32
32	Cardiolipin remodeling in Barth syndrome and other hereditary cardiomyopathies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165803.	3.8	19
33	Therapeutic approaches in heart failure with preserved ejection fraction: past, present, and future. Clinical Research in Cardiology, 2020, 109, 1079-1098.	3.3	74
34	Response by Bertero et al to Letter Regarding Article, "Mitochondria Do Not Survive Calcium Overload". Circulation Research, 2020, 126, e58-e59.	4.5	7
35	Mitofusin 2 Is Essential for IP3-Mediated SR/Mitochondria Metabolic Feedback in Ventricular Myocytes. Frontiers in Physiology, 2019, 10, 733.	2.8	30
36	Energetic drain driving hypertrophic cardiomyopathy. FEBS Letters, 2019, 593, 1616-1626.	2.8	34

#	Article	IF	CITATIONS
37	The Partial AdeNosine A1 receptor agonist in patients with Chronic Heart failure and preserved Ejection fraction (PANACHE) trial. Cardiovascular Research, 2019, 115, e71-e73.	3.8	4
38	Bidirectional Relationship Between Cancer and Heart Failure: Old and New Issues in Cardio-oncology. Cardiac Failure Review, 2019, 5, 106-111.	3.0	36
39	Recent advances in cardioâ€oncology: a report from the â€~Heart Failure Association 2019 and World Congress on Acute Heart Failure 2019'. ESC Heart Failure, 2019, 6, 1140-1148.	3.1	34
40	Metabolic Alterations in Inherited Cardiomyopathies. Journal of Clinical Medicine, 2019, 8, 2195.	2.4	28
41	Treatments targeting inotropy. European Heart Journal, 2019, 40, 3626-3644.	2.2	123
42	Duration of chronic heart failure affects outcomes with preserved effects of heart rate reduction with ivabradine: findings from SHIFT. European Journal of Heart Failure, 2018, 20, 373-381.	7.1	41
43	A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway. Nature Medicine, 2018, 24, 62-72.	30.7	88
44	Cardiac effects of SGLT2 inhibitors: the sodium hypothesis. Cardiovascular Research, 2018, 114, 12-18.	3.8	114
45	Raf kinase inhibitor protein mediates myocardial fibrosis under conditions of enhanced myocardial oxidative stress. Basic Research in Cardiology, 2018, 113, 42.	5.9	50
46	Calcium Signaling and Reactive Oxygen Species in Mitochondria. Circulation Research, 2018, 122, 1460-1478.	4.5	381
47	Metabolic remodelling in heart failure. Nature Reviews Cardiology, 2018, 15, 457-470.	13.7	392
48	Low STAT3 expression sensitizes to toxic effects of β-adrenergic receptor stimulation in peripartum cardiomyopathy. European Heart Journal, 2017, 38, ehw086.	2.2	87
49	Mitochondrial energetics and calcium coupling in the heart. Journal of Physiology, 2017, 595, 3753-3763.	2.9	67
50	Endogenous nitric oxide formation in cardiac myocytes does not control respiration during βâ€adrenergic stimulation. Journal of Physiology, 2017, 595, 3781-3798.	2.9	16
51	Inhibition of MicroRNA-146a and Overexpression of Its Target Dihydrolipoyl Succinyltransferase Protect Against Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction. Circulation, 2017, 136, 747-761.	1.6	53
52	Metabolic cardiomyopathies: fighting the next epidemic. Cardiovascular Research, 2017, 113, 367-369.	3.8	10
53	Impact of Oxidative Stress on the HeartÂand Vasculature. Journal of the American College of Cardiology, 2017, 70, 212-229.	2.8	362
54	Targeting Mitochondrial Calcium Handling and Reactive Oxygen Species in Heart Failure. Current Heart Failure Reports, 2017, 14, 338-349.	3.3	67

#	Article	IF	CITATIONS
55	Barth syndrome cardiomyopathy. Cardiovascular Research, 2017, 113, 399-410.	3.8	58
56	The cardiac reâ€AKTâ€ion to chronic volume overload. European Journal of Heart Failure, 2016, 18, 372-374.	7.1	2
57	Mitochondrial Therapies in Heart Failure. Handbook of Experimental Pharmacology, 2016, 243, 491-514.	1.8	18
58	Orphaned mitochondria in heart failure. Cardiovascular Research, 2016, 109, 6-8.	3.8	7
59	Pericardial effusion associated with hypothyroidism in an adult female with down syndrome. American Journal of Medical Genetics, Part A, 2015, 167, 1674-1675.	1.2	2
60	Reversal of Mitochondrial Transhydrogenase Causes Oxidative Stress in Heart Failure. Cell Metabolism, 2015, 22, 472-484.	16.2	307
61	Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications. European Heart Journal, 2015, 36, 2555-2564.	2.2	306
62	Exercise attenuates inflammation and limits scar thinning after myocardial infarction in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H345-H359.	3.2	38
63	Deranged sodium to sudden death. Journal of Physiology, 2015, 593, 1331-1345.	2.9	46
64	Cardiac RKIP induces a beneficial β-adrenoceptor–dependent positive inotropy. Nature Medicine, 2015, 21, 1298-1306.	30.7	67
65	Ca <scp>M</scp> Kinase <scp>II</scp> mediates maladaptive postâ€infarct remodeling and proâ€inflammatory chemoattractant signaling but not acute myocardial ischemia/reperfusion injury. EMBO Molecular Medicine, 2014, 6, 1231-1245.	6.9	94
66	Mitochondrial reactive oxygen species production and elimination. Journal of Molecular and Cellular Cardiology, 2014, 73, 26-33.	1.9	243
67	Meeting highlights from the 2013 <scp>E</scp> uropean <scp>S</scp> ociety of <scp>C</scp> ardiology <scp>H</scp> eart <scp>F</scp> ailure <scp>A</scp> ssociation <scp>W</scp> inter <scp>M</scp> eeting on <scp>T</scp> ranslational <scp>H</scp> eart <scp>F</scp> ailure <scp>R</scp> esearch. European lournal of Heart Failure. 2014. 16. 6-14.	7.1	1
68	Cardiac CaM Kinase II Genes \hat{I}' and \hat{I}^3 Contribute to Adverse Remodeling but Redundantly Inhibit Calcineurin-Induced Myocardial Hypertrophy. Circulation, 2014, 130, 1262-1273.	1.6	149
69	Intracellular Na+ and cardiac metabolism. Journal of Molecular and Cellular Cardiology, 2013, 61, 20-27.	1.9	52
70	SR and mitochondria: Calcium cross-talk between kissing cousins. Journal of Molecular and Cellular Cardiology, 2013, 55, 42-49.	1.9	116
71	Myocardial energetics in heart failure. Basic Research in Cardiology, 2013, 108, 358.	5.9	117
72	Calcium release microdomains and mitochondria. Cardiovascular Research, 2013, 98, 259-268.	3.8	90

5

#	Article	IF	CITATIONS
73	HDAC4 controls histone methylation in response to elevated cardiac load. Journal of Clinical Investigation, 2013, 123, 1359-1370.	8.2	157
74	Mitofusin 2-Containing Mitochondrial-Reticular Microdomains Direct Rapid Cardiomyocyte Bioenergetic Responses Via Interorganelle Ca ²⁺ Crosstalk. Circulation Research, 2012, 111, 863-875.	4.5	286
75	Targeting Mitochondrial Oxidative Stress in Heart Failure. Journal of the American College of Cardiology, 2011, 58, 83-86.	2.8	76
76	Interplay of Defective Excitation-Contraction Coupling, Energy Starvation, and Oxidative Stress in Heart Failure. Trends in Cardiovascular Medicine, 2011, 21, 69-73.	4.9	23
77	Elevated Cytosolic Na ⁺ Increases Mitochondrial Formation of Reactive Oxygen Species in Failing Cardiac Myocytes. Circulation, 2010, 121, 1606-1613.	1.6	273
78	Adverse Bioenergetic Consequences of Na ⁺ -Ca ²⁺ Exchanger–Mediated Ca ²⁺ Influx in Cardiac Myocytes. Circulation, 2010, 122, 2273-2280.	1.6	76
79	Endogenous Activation of Mitochondrial K ATP Channels Protects Human Failing Myocardium From Hydroxyl Radical–Induced Stunning. Circulation Research, 2009, 105, 811-817.	4.5	35
80	Phosphodiesterase 4 inhibition but not beta-adrenergic stimulation suppresses tumor necrosis factor-alpha release in peripheral blood mononuclear cells in septic shock. Critical Care, 2008, 12, R159.	5.8	18
81	Excitation-contraction coupling and mitochondrial energetics. Basic Research in Cardiology, 2007, 102, 369-392.	5.9	221
82	Elevated Cytosolic Na + Decreases Mitochondrial Ca 2+ Uptake During Excitation-Contraction Coupling and Impairs Energetic Adaptation in Cardiac Myocytes. Circulation Research, 2006, 99, 172-182.	4.5	335
83	Cardiac Sodium-Calcium Exchanger Is Regulated by Allosteric Calcium and Exchanger Inhibitory Peptide at Distinct Sites. Circulation Research, 2005, 96, 91-99.	4.5	52
84	Oxygen Free Radical Release in Human Failing Myocardium Is Associated With Increased Activity of Rac1-GTPase and Represents a Target for Statin Treatment. Circulation, 2003, 108, 1567-1574.	1.6	396