Stephen M Lanier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3707810/publications.pdf

Version: 2024-02-01

95 papers

4,348 citations

76326 40 h-index 63 g-index

95 all docs 95 docs citations

95 times ranked 2663 citing authors

#	Article	IF	Citations
1	Intersection of two key signal integrators in the cell: activator of G protein Signaling 3 and Dishevelled-2. Journal of Cell Science, 2020, 133, .	2.0	4
2	Role of G-proteins and S/T phosphorylation sites in the transition of Activator of G-Protein signaling 3 to cell puncta. Journal of Cell Science, $2018, 131, \ldots$	2.0	8
3	Activators of G-Protein Signaling (AGS). , 2018, , 133-140.		O
4	Direct Coupling of a Seven-Transmembrane-Span Receptor to a G <i>α</i> i G-Protein Regulatory Motif Complex. Molecular Pharmacology, 2015, 88, 231-237.	2.3	9
5	Activators of G Protein Signaling Exhibit Broad Functionality and Define a Distinct Core Signaling Triad. Molecular Pharmacology, 2014, 85, 388-396.	2.3	54
6	Defective Chemokine Signal Integration in Leukocytes Lacking Activator of G Protein Signaling 3 (AGS3). Journal of Biological Chemistry, 2014, 289, 10738-10747.	3.4	23
7	Group II Activators of G-protein Signaling. Methods in Enzymology, 2013, 522, 153-167.	1.0	11
8	Regulation of the G-protein Regulatory-Gî±i Signaling Complex by Nonreceptor Guanine Nucleotide Exchange Factors. Journal of Biological Chemistry, 2013, 288, 3003-3015.	3.4	33
9	Translocation of Activator of G-protein Signaling 3 to the Golgi Apparatus in Response to Receptor Activation and Its Effect on the trans-Golgi Network. Journal of Biological Chemistry, 2013, 288, 24091-24103.	3.4	16
10	Regulation of the AGS4–Gαi Interaction by Chemokine Receptors and the Nonâ€Receptor Guanine Nucleotide Exchange Factor Ricâ€8A. FASEB Journal, 2013, 27, 1095.7.	0.5	0
11	Influence of the Accessory Protein SET on M3 Muscarinic Receptor Phosphorylation and G Protein Coupling. Molecular Pharmacology, 2012, 82, 17-26.	2.3	7
12	Mechanisms involved in the translocation of AGS3 from cell cortex to the Golgi apparatus following activation of a Gâ€protein coupled receptor. FASEB Journal, 2012, 26, 838.5.	0.5	0
13	Defective migration in Activator of G protein Signaling 3â€null leukocytes in response to CXCL12 and CCL19 stimulation. FASEB Journal, 2012, 26, 838.7.	0.5	O
14	Factors regulating the subcellular localization of Activators of Gâ€protein Signaling 3: The role of serine/threonine residues in the Gâ€protein regulatory domain. FASEB Journal, 2012, 26, 838.6.	0.5	0
15	Loss of activator of Gâ€protein signaling 3 impairs renal tubular regeneration following acute kidney injury in rodents. FASEB Journal, 2011, 25, 1844-1855.	0.5	52
16	Purification of Heterotrimeric G Protein \hat{l}_{\pm} Subunits by GST-Ric-8 Association. Journal of Biological Chemistry, 2011, 286, 2625-2635.	3.4	59
17	Identification of Transcription Factor E3 (TFE3) as a Receptor-independent Activator of G $\hat{l}\pm 16$. Journal of Biological Chemistry, 2011, 286, 17766-17776.	3.4	30
18	Characterization of a Muscarinic M3 Receptorâ€Associated Protein Complex. FASEB Journal, 2011, 25, 1012.7.	0.5	0

#	Article	IF	CITATIONS
19	Regulation of the AGS3·Gαi Signaling Complex by a Seven-transmembrane Span Receptor*. Journal of Biological Chemistry, 2010, 285, 33949-33958.	3.4	44
20	Activator of G Protein Signaling 3 Promotes Epithelial Cell Proliferation in PKD. Journal of the American Society of Nephrology: JASN, 2010, 21, 1275-1280.	6.1	52
21	Distribution of Activator of G-Protein Signaling 3 within the Aggresomal Pathway: Role of Specific Residues in the Tetratricopeptide Repeat Domain and Differential Regulation by the AGS3 Binding Partners Giα and Mammalian Inscuteable. Molecular and Cellular Biology, 2010, 30, 1528-1540.	2.3	23
22	COUPLING OF A Gâ€PROTEIN COUPLED RECEPTOR TO THE AGS3â€Galphai SIGNALING COMPLEX. FASEB Journal, 2010, 24, 587.7.	0.5	0
23	Movement of Activator of Gâ€Protein Signaling 3 within the Aggresome Pathway. FASEB Journal, 2010, 24, 587.6.	0.5	O
24	Activator of G Protein Signaling 8 (AGS8) Is Required for Hypoxia-induced Apoptosis of Cardiomyocytes. Journal of Biological Chemistry, 2009, 284, 31431-31440.	3.4	74
25	ACTIVATOR OF Gâ€PROTEIN SIGNALING 3: THE ROLE OF THE TETRATRICOPEPTIDE REPEAT DOMAIN IN REGULATING THE INTERACTION OF AGS3 WITH Gâ€PROTEIN FASEB Journal, 2009, 23, 584.6.	0.5	O
26	ACTIVATOR OF Gâ€PROTEIN SIGNALING 3: THE ROLE OF THE TETRATRICOPEPTIDE REPEAT DOMAIN IN SUBCELLULAR POSITIONING OF THE PROTEIN. FASEB Journal, 2009, 23, 584.5.	0.5	0
27	The PDZ and Band 4.1 Containing Protein Frmpd1 Regulates the Subcellular Location of Activator of G-protein Signaling 3 and Its Interaction with G-proteins. Journal of Biological Chemistry, 2008, 283, 24718-24728.	3.4	30
28	Activator of G Protein Signaling 3 Null Mice: I. Unexpected Alterations in Metabolic and Cardiovascular Function. Endocrinology, 2008, 149, 3842-3849.	2.8	58
29	The role of the tetratricopeptide repeat (TPR) domain of AGS3 in subcellular localization of the protein. FASEB Journal, 2008, 22, 908.3.	0.5	O
30	Selective regulation of Gâ€protein signaling pathways by AGS3. FASEB Journal, 2008, 22, 908.2.	0.5	0
31	Activator of Gâ€protein Signaling 3 null mice: unexpected alterations in metabolic and cardiovascular function. FASEB Journal, 2008, 22, 908.1.	0.5	O
32	The PDZ and Band 4.1 containing protein Frmpd1 influences the subcellular location of Activator of G― protein signaling 3 and its interaction with Gâ€proteins. FASEB Journal, 2008, 22, 908.4.	0.5	0
33	Signaling by a Non-dissociated Complex of G Protein $\hat{l}^2\hat{l}^3$ and \hat{l}_\pm Subunits Stimulated by a Receptor-independent Activator of G Protein Signaling, AGS8. Journal of Biological Chemistry, 2007, 282, 19938-19947.	3.4	38
34	Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling., 2007, 113, 488-506.		119
35	ACCESSORY PROTEINS FOR G PROTEINS: Partners in Signaling. Annual Review of Pharmacology and Toxicology, 2006, 46, 151-187.	9.4	171
36	Identification and characterization of a G-protein regulatory motif in WAVE1. FEBS Letters, 2006, 580, 1993-1998.	2.8	9

#	Article	IF	CITATIONS
37	The G-protein regulatory (GPR) motif-containing Leu–Gly–Asn-enriched protein (LGN) and Giα3 influence cortical positioning of the mitotic spindle poles at metaphase in symmetrically dividing mammalian cells. European Journal of Cell Biology, 2006, 85, 1233-1240.	3.6	42
38	The Proto-oncogene SET Interacts with Muscarinic Receptors and Attenuates Receptor Signaling. Journal of Biological Chemistry, 2006, 281, 40310-40320.	3.4	20
39	Identification of a receptor-independent activator of G protein signaling (AGS8) in ischemic heart and its interaction with GbetaÂ. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 797-802.	7.1	66
40	AGS3 TPR domain interacting protein 2 (ATIPâ€⊋) influences AGS3 interaction with Gâ€protein FASEB Journal, 2006, 20, A256.	0.5	0
41	The influence of EGF, PM1 mutations and posttranslational processing on the subcellular location of AGS1/DexRas1. FASEB Journal, 2006, 20, A1120.	0.5	0
42	Influence of the Membrane Lipid Structure on Signal Processing via G Protein-Coupled Receptors. Molecular Pharmacology, 2005, 68, 210-217.	2.3	80
43	AGS proteins: receptor-independent activators of G-protein signaling. Trends in Pharmacological Sciences, 2005, 26, 470-6.	8.7	81
44	AGS3 and Signal Integration by Gαs- and Gαi-coupled Receptors. Journal of Biological Chemistry, 2004, 279, 13375-13382.	3.4	44
45	Identification and Characterization of AGS4. Journal of Biological Chemistry, 2004, 279, 27567-27574.	3.4	46
46	The Ras-related protein AGS1/RASD1 suppresses cell growth. Oncogene, 2004, 23, 5858-5863.	5.9	113
47	AGS proteins, GPR motifs and the signals processed by heterotrimeric G proteins. Biology of the Cell, 2004, 96, 369-372.	2.0	26
48	Activator of G Protein Signaling 3. Neuron, 2004, 42, 269-281.	8.1	221
49	AGS3: A G-Protein Regulator of Addiction-Associated Behaviors. Annals of the New York Academy of Sciences, 2003, 1003, 356-357.	3.8	9
50	Asymmetrically Distributed C. elegans Homologs of AGS3/PINS Control Spindle Position in the Early Embryo. Current Biology, 2003, 13, 1029-1037.	3.9	229
51	Influence of Cytosolic AGS3 on Receptorâ^'G Protein Coupling. Biochemistry, 2003, 42, 8085-8093.	2.5	18
52	Interaction of Activator of G-protein Signaling 3 (AGS3) with LKB1, a Serine/Threonine Kinase Involved in Cell Polarity and Cell Cycle Progression. Journal of Biological Chemistry, 2003, 278, 23217-23220.	3.4	57
53	Receptor- and Nucleotide Exchange-independent Mechanisms for Promoting G Protein Subunit Dissociation. Journal of Biological Chemistry, 2003, 278, 34747-34750.	3.4	59
54	Accessory Proteins for G Protein-Signaling Systems: Activators of G Protein Signaling and Other Nonreceptor Proteins Influencing the Activation State of G Proteins. Receptors and Channels, 2003, 9, 195-204.	1.1	2

#	Article	IF	CITATIONS
55	Accessory Proteins for G Protein-Signaling Systems: Activators of G Protein Signaling and Other Nonreceptor Proteins Influencing the Activation State of G Proteins. Receptors and Channels, 2003, 9, 195-204.	1.1	26
56	Accessory proteins for G protein-signaling systems: activators of G protein signaling and other nonreceptor proteins influencing the activation state of G proteins. Receptors and Channels, 2003, 9, 195-204.	1.1	10
57	Activator of G-protein Signaling 1 Blocks GIRK Channel Activation by a G-protein-coupled Receptor. Journal of Biological Chemistry, 2002, 277, 13827-13830.	3.4	63
58	Identification of Structural Features in the G-protein Regulatory Motif Required for Regulation of Heterotrimeric G-proteins. Journal of Biological Chemistry, 2002, 277, 6767-6770.	3.4	51
59	Expression Analysis and Subcellular Distribution of the Two G-protein Regulators AGS3 and LGN Indicate Distinct Functionality. Journal of Biological Chemistry, 2002, 277, 15897-15903.	3.4	106
60	Pertussis Toxin-insensitive Activation of the Heterotrimeric G-proteins Gi/Go by the NG108-15 G-protein Activator. Journal of Biological Chemistry, 2002, 277, 50223-50225.	3.4	19
61	Identification of Modulators of Mammalian G-Protein Signaling by Functional Screens in the Yeast Saccharomyces cerevisiae. Methods in Enzymology, 2002, 344, 153-168.	1.0	14
62	Analysis of Signal Transfer from Receptor to Go/Gi in Different Membrane Environments and Receptor-Independent Activators of Brain G Protein. Methods in Enzymology, 2002, 344, 140-152.	1.0	3
63	Protein Interaction Assays with G Proteins. Methods in Enzymology, 2002, 344, 521-535.	1.0	2
64	Receptor-independent activators of heterotrimeric G-proteins. Life Sciences, 2001, 68, 2301-2308.	4.3	62
65	Adenylyl cyclase isoforms and signal integration in models of vascular smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1545-H1552.	3.2	32
66	Partial Agonist Clonidine Mediates $\hat{l}\pm 2$ -AR Subtypes Specific Regulation of cAMP Accumulation in Adenylyl Cyclase II Transfected DDT1-MF2 Cells. Molecular Pharmacology, 2001, 59, 331-338.	2.3	7
67	Dopamine induces ERK activation in renal epithelial cells through H2O2 produced by monoamine oxidase. Kidney International, 2001, 59, 76-86.	5.2	56
68	Selective Interaction of AGS3 with C-proteins and the Influence of AGS3 on the Activation State of G-proteins. Journal of Biological Chemistry, 2001, 276, 1585-1593.	3.4	131
69	Identification of a Truncated Form of the G-protein Regulator AGS3 in Heart That Lacks the Tetratricopeptide Repeat Domains. Journal of Biological Chemistry, 2001, 276, 16601-16610.	3.4	57
70	Analysis of the Pharmacological and Molecular Heterogeneity of I ₂ -Imidazoline-Binding Proteins using Monoamine Oxidase-Deficient Mouse Models. Molecular Pharmacology, 2000, 58, 1085-1090.	2.3	43
71	Stabilization of the GDP-bound Conformation of $\widehat{\text{Gil}}$ by a Peptide Derived from the G-protein Regulatory Motif of AGS3. Journal of Biological Chemistry, 2000, 275, 33193-33196.	3.4	126
72	Activation of Heterotrimeric G-protein Signaling by a Ras-related Protein. Journal of Biological Chemistry, 2000, 275, 23421-23424.	3.4	144

#	Article	IF	CITATIONS
73	AGS3 Inhibits GDP Dissociation from Gl [±] Subunits of the Gi Family and Rhodopsin-dependent Activation of Transducin. Journal of Biological Chemistry, 2000, 275, 40981-40985.	3.4	102
74	Identification of $G^{\hat{1}2\hat{1}3}$ Binding Sites in the Third Intracellular Loop of the M3-muscarinic Receptor and Their Role in Receptor Regulation. Journal of Biological Chemistry, 2000, 275, 9026-9034.	3.4	91
75	Influence of G Protein Type on Agonist Efficacy. Molecular Pharmacology, 1999, 56, 651-656.	2.3	51
76	Receptor-independent Activators of Heterotrimeric G-protein Signaling Pathways. Journal of Biological Chemistry, 1999, 274, 33202-33205.	3.4	251
77	Genetic screens in yeast to identify mammalian nonreceptor modulators of G-protein signaling. Nature Biotechnology, 1999, 17, 878-883.	17.5	196
78	Receptor Docking Sites for G-protein $\hat{I}^2\hat{I}^3$ Subunits. Journal of Biological Chemistry, 1998, 273, 7197-7200.	3.4	97
79	Interaction of Arrestins with Intracellular Domains of Muscarinic and α2-Adrenergic Receptors. Journal of Biological Chemistry, 1997, 272, 17836-17842.	3.4	129
80	Factors Determining the Specificity of Signal Transduction by Guanine Nucleotide-binding Protein-coupled Receptors. Journal of Biological Chemistry, 1997, 272, 16466-16473.	3.4	46
81	The 3′-Untranslated Region of the α2C-Adrenergic Receptor mRNA Impedes Translation of the Receptor Message. Journal of Biological Chemistry, 1997, 272, 15466-15473.	3.4	22
82	Relationship between $\hat{l}\pm 2$ -Adrenergic Receptors and Imidazoline/Guanidinium Receptive Sites. Advances in Pharmacology, 1997, 42, 474-477.	2.0	2
83	Dual modulation of calcium channel current via recombinant α2-adrenoceptors in pheochromocytoma (PC-12) cells. Pflugers Archiv European Journal of Physiology, 1997, 435, 280-285.	2.8	9
84	The elusive family of imidazoline binding sites. Trends in Pharmacological Sciences, 1996, 17, 13-16.	8.7	133
85	Characterization of a G-protein Activator in the Neuroblastoma-Glioma Cell Hybrid NG108-15. Journal of Biological Chemistry, 1996, 271, 30052-30060.	3.4	45
86	Separation of \hat{l}_{\pm} -adrenergic and imidazoline/guanidinium receptive sites (IGRS) activity in a series of imidazoline analogues of cirazoline. Bioorganic and Medicinal Chemistry, 1995, 3, 1503-1509.	3.0	12
87	Factors Determining Specificity of Signal Transduction by G-protein-coupled Receptors. Journal of Biological Chemistry, 1995, 270, 15269-15276.	3.4	59
88	Imidazoline/Guanidinium Binding Domains on Monoamine Oxidases. Journal of Biological Chemistry, 1995, 270, 27961-27968.	3.4	58
89	Use of High Affinity, Radioiodinated Probes for Identification of Imidazoline/Guanidinium Receptive Sites. Annals of the New York Academy of Sciences, 1995, 763, 106-111.	3.8	3
90	Agonist-induced isomerization of the .alpha.1-adrenergic receptor: kinetic analysis using broken-cell and solubilized preparations. Biochemistry, 1986, 25, 2697-2702.	2.5	13

STEPHEN M LANIER

#	Article	IF	CITATIONS
91	Inhibition by Prostaglandins of Adrenergic Transmission in the Left Ventricular Myocardium of Anesthetized Dogs. Journal of Cardiovascular Pharmacology, 1985, 7, 653-659.	1.9	17
92	Transient high-affinity binding of agonists to $\hat{l}\pm 1$ -adrenergic receptors of intact liver cells. FEBS Letters, 1985, 187, 205-210.	2.8	19
93	Prostaglandin E2 metabolism by isolated kidneys of New Zealand genetically hypertensive and normotensive rats. Biochemical Medicine, 1981, 25, 98-105.	0.5	2
94	Ags1. The AFCS-nature Molecule Pages, 0, , .	0.2	2
95	Ags3. The AFCS-nature Molecule Pages, 0, , .	0.2	0