Ian A Dickie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3707573/publications.pdf

Version: 2024-02-01

47006 42399 9,266 115 47 92 citations h-index g-index papers 121 121 121 10253 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Redefining fine roots improves understanding of belowâ€ground contributions to terrestrial biosphere processes. New Phytologist, 2015, 207, 505-518.	7.3	906
2	Rooting theories of plant community ecology in microbial interactions. Trends in Ecology and Evolution, 2010, 25, 468-478.	8.7	666
3	Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecology Letters, 2010, 13, 675-684.	6.4	494
4	Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by Tâ€RFLP analysis. New Phytologist, 2002, 156, 527-535.	7.3	385
5	Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecology Letters, 2011, 14, 493-502.	6.4	332
6	DNA metabarcodingâ€"Need for robust experimental designs to draw sound ecological conclusions. Molecular Ecology, 2019, 28, 1857-1862.	3.9	300
7	Coâ€invasion by <i>Pinus</i> and its mycorrhizal fungi. New Phytologist, 2010, 187, 475-484.	7.3	233
8	Conflicting values: ecosystem services and invasive tree management. Biological Invasions, 2014, 16, 705-719.	2.4	230
9	Species- and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest. Journal of Ecology, 2011, 99, 954-963.	4.0	221
10	Negative soil feedbacks accumulate over time for nonâ€native plant species. Ecology Letters, 2010, 13, 803-809.	6.4	220
11	Ectomycorrhizal fungal communities at forest edges. Journal of Ecology, 2005, 93, 244-255.	4.0	219
12	Do assembly history effects attenuate from species to ecosystem properties? A field test with woodâ€inhabiting fungi. Ecology Letters, 2012, 15, 133-141.	6.4	184
13	Host preference, niches and fungal diversity. New Phytologist, 2007, 174, 230-233.	7.3	181
14	Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. New Phytologist, 2015, 205, 1565-1576.	7.3	173
15	Insidious effects of sequencing errors on perceived diversity in molecular surveys. New Phytologist, 2010, 188, 916-918.	7.3	161
16	A common framework for identifying linkage rules across different types of interactions. Functional Ecology, 2016, 30, 1894-1903.	3.6	161
17	INFLUENCES OF ESTABLISHED TREES ON MYCORRHIZAS, NUTRITION, AND GROWTH OF QUERCUS RUBRA SEEDLINGS. Ecological Monographs, 2002, 72, 505-521.	5.4	157
18	Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant and Soil, 2013, 367, 11-39.	3.7	152

#	Article	IF	CITATIONS
19	Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytologist, 2011, 189, 366-370.	7. 3	149
20	Invasive belowground mutualists of woody plants. Biological Invasions, 2014, 16, 645-661.	2.4	141
21	The emerging science of linked plant–fungal invasions. New Phytologist, 2017, 215, 1314-1332.	7.3	140
22	Towards robust and repeatable sampling methods in <scp>eDNA</scp> â€based studies. Molecular Ecology Resources, 2018, 18, 940-952.	4.8	137
23	Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza, 2007, 17, 259-270.	2.8	135
24	Spatially disjunct effects of co-occurring competition and facilitation. Ecology Letters, 2005, 8, 1191-1200.	6.4	131
25	Tree invasions into treeless areas: mechanisms and ecosystem processes. Biological Invasions, 2014, 16, 663-675.	2.4	130
26	Dualâ€mycorrhizal plants: their ecology and relevance. New Phytologist, 2020, 225, 1835-1851.	7.3	119
27	Fine endophytes (<i>Glomus tenue</i>) are related to Mucoromycotina, not Glomeromycota. New Phytologist, 2017, 213, 481-486.	7.3	101
28	Ecosystem service and biodiversity trade-offs in two woody successions. Journal of Applied Ecology, 2011, 48, 926-934.	4.0	96
29	Vesicular–arbuscular mycorrhizal infection of Quercus rubra seedlings. New Phytologist, 2001, 151, 257-264.	7.3	91
30	A â€~dirty' business: testing the limitations of terminal restriction fragment length polymorphism (TRFLP) analysis of soil fungi. Molecular Ecology, 2006, 15, 873-882.	3.9	86
31	No â€~home' versus â€~away' effects of decomposition found in a grassland–forest reciprocal litter transplant study. Soil Biology and Biochemistry, 2011, 43, 1482-1489.	8.8	85
32	Shared ectomycorrhizal fungi between a herbaceous perennial (Helianthemum bicknellii) and oak () Tj ETQq0 0	O rgBT /Ov	verlock 10 Tf
33	Mycorrhizas in changing ecosystems [,] . Botany, 2014, 92, 149-160.	1.0	82
34	Ecological significance of mineral weathering in ectomycorrhizal and arbuscular mycorrhizal ecosystems from a field-based comparison. Soil Biology and Biochemistry, 2014, 69, 63-70.	8.8	79
35	No globally consistent effect of ectomycorrhizal status on foliar traits. New Phytologist, 2012, 196, 845-852.	7.3	78
36	Soilâ€mediated effects of invasive ungulates on native tree seedlings. Journal of Ecology, 2014, 102, 622-631.	4.0	76

#	Article	IF	Citations
37	Effects of mycorrhizal fungi on plant populations. Plant and Soil, 2002, 244, 307-317.	3.7	75
38	Belowground legacies of Pinus contorta invasion and removal result in multiple mechanisms of invasional meltdown. AoB PLANTS, 2014, 6, .	2.3	68
39	Fine root endophytes under scrutiny: a review of the literature on arbuscule-producing fungi recently suggested to belong to the Mucoromycotina. Mycorrhiza, 2017, 27, 619-638.	2.8	67
40	Testing the coâ€invasion hypothesis: ectomycorrhizal fungal communities on ⟨i>Alnus glutinosa⟨ i>and ⟨i>Salix fragilis⟨ i> in New Zealand. Diversity and Distributions, 2015, 21, 268-278.	4.1	65
41	Is oak establishment in old-fields and savanna openings context dependent?. Journal of Ecology, 2007, 95, 309-320.	4.0	63
42	Loss of a dominant nitrogenâ€fixing shrub in primary succession: consequences for plant and belowâ€ground communities. Journal of Ecology, 2012, 100, 1074-1084.	4.0	62
43	A standardized set of metrics to assess and monitor tree invasions. Biological Invasions, 2014, 16, 535-551.	2.4	60
44	Biotic interactions drive ecosystem responses to exotic plant invaders. Science, 2020, 368, 967-972.	12.6	59
45	Component growth efficiencies of mycorrhizal and nonmycorrhizal plants. New Phytologist, 2000, 148, 163-168.	7.3	58
46	Soil microbial community structure explains the resistance of respiration to a dry–rewet cycle, but not soil functioning under static conditions. Functional Ecology, 2016, 30, 1430-1439.	3.6	55
47	Towards a framework for understanding the context dependence of impacts of nonâ€native tree species. Functional Ecology, 2020, 34, 944-955.	3.6	54
48	Novel interactions between nonâ€native mammals and fungi facilitate establishment of invasive pines. Journal of Ecology, 2015, 103, 121-129.	4.0	52
49	Ectomycorrhizal fungal communities and soil chemistry in harvested and unharvested temperate Nothofagus rainforests. Canadian Journal of Forest Research, 2009, 39, 1069-1079.	1.7	51
50	Land use is a determinant of plant pathogen alpha―but not betaâ€diversity. Molecular Ecology, 2019, 28, 3786-3798.	3.9	50
51	Mycorrhizal coâ€invasion and novel interactions depend on neighborhood context. Ecology, 2015, 96, 2336-2347.	3.2	48
52	TRAMPR: AN R package for analysis and matching of terminal-restriction fragment length polymorphism (TRFLP) profiles. Molecular Ecology Notes, 2007, 7, 583-587.	1.7	47
53	Towards a global view of ectomycorrhizal ecology. New Phytologist, 2008, 180, 263-265.	7.3	47
54	Complex facilitation and competition in a temperate grassland: loss of plant diversity and elevated CO2 have divergent and opposite effects on oak establishment. Oecologia, 2013, 171, 449-458.	2.0	47

#	Article	IF	Citations
55	Does host plant richness explain diversity of ectomycorrhizal fungi? Reâ€evaluation of Gao ⟨i⟩etÂal⟨/i⟩. (2013) data sets reveals sampling effects. Molecular Ecology, 2014, 23, 992-995.	3.9	42
56	Towards management of invasive ectomycorrhizal fungi. Biological Invasions, 2016, 18, 3383-3395.	2.4	41
57	Priority effects are interactively regulated by topâ€down and bottomâ€up forces: evidence from wood decomposer communities. Ecology Letters, 2017, 20, 1054-1063.	6.4	41
58	DNA metabarcoding as a tool for invertebrate community monitoring: a case study comparison with conventional techniques. Austral Entomology, 2019, 58, 675-686.	1.4	41
59	Soil modification by different tree species influences the extent of seedling ectomycorrhizal infection. Mycorrhiza, 2006, 16, 73-79.	2.8	39
60	Effects of climate change on the delivery of soilâ€mediated ecosystem services within the primary sector in temperate ecosystems: a review and New Zealand case study. Global Change Biology, 2015, 21, 2844-2860.	9.5	36
61	Evolving insights to understanding mycorrhizas. New Phytologist, 2015, 205, 1369-1374.	7.3	31
62	Tissue density and growth response of ectomycorrhizal fungi to nitrogen source and concentration. Mycorrhiza, 1998, 8, 145-148.	2.8	28
63	Ectomycorrhizal fungal communities of oak savanna are distinct from forest communities. Mycologia, 2009, 101, 473-483.	1.9	28
64	Scale and complexity implications of making New Zealand predator-free by 2050. Journal of the Royal Society of New Zealand, 2019, 49, 412-439.	1.9	28
65	Good-Enough RFLP Matcher (GERM) program. Mycorrhiza, 2003, 13, 171-172.	2.8	25
66	Physiological and phenological responses of oak seedlings to oak forest soil in the absence of trees. Tree Physiology, 2007, 27, 133-140.	3.1	25
67	Evolutionary dynamics of tree invasions: complementing the unified framework for biological invasions. AoB PLANTS, 2016, , plw085.	2.3	25
68	Sample storage conditions alter colonisation structures of arbuscular mycorrhizal fungi and, particularly, fine root endophyte. Plant and Soil, 2017, 412, 35-42.	3.7	25
69	Invasive N-fixer Impacts on Litter Decomposition Driven by Changes to Soil Properties Not Litter Quality. Ecosystems, 2017, 20, 1151-1163.	3.4	25
70	No single driver of biodiversity: divergent responses of multiple taxa across land use types. Ecosphere, 2017, 8, e01997.	2.2	25
71	Podocarp Roots, Mycorrhizas, and Nodules. Smithsonian Contributions To Botany, 2011, , 175-187.	0.7	21
72	Rarity is a more reliable indicator of land-use impacts on soil invertebrate communities than other diversity metrics. ELife, 2020, 9, .	6.0	20

#	Article	IF	CITATIONS
73	Symmetric assembly and disassembly processes in an ecological network. Ecology Letters, 2018, 21, 896-904.	6.4	19
74	Agricultural landâ€use favours Mucoromycotinian, but not Glomeromycotinian, arbuscular mycorrhizal fungi across ten biomes. New Phytologist, 2022, 233, 1369-1382.	7.3	19
75	On the perils of mycorrhizal status lists: the case of Buddleja davidii. Mycorrhiza, 2007, 17, 687-688.	2.8	18
76	Patterns of plant naturalization show that facultative mycorrhizal plants are more likely to succeed outside their native Eurasian ranges. Ecography, 2020, 43, 648-659.	4.5	18
77	Arbuscular mycorrhizal inoculum potential: a mechanism promoting positive diversity–invasibility relationships in mountain beech forests in New Zealand?. Mycorrhiza, 2011, 21, 309-314.	2.8	17
78	Rat invasion of islands alters fungal community structure, but not wood decomposition rates. Oikos, 2013, 122, 258-264.	2.7	17
79	Evidence for Niche Differentiation in the Environmental Responses of Co-occurring Mucoromycotinian Fine Root Endophytes and Glomeromycotinian Arbuscular Mycorrhizal Fungi. Microbial Ecology, 2021, 81, 864-873.	2.8	17
80	Biases in the metabarcoding of plant pathogens using rust fungi as a model system. MicrobiologyOpen, 2019, 8, e780.	3.0	16
81	Using DNA meta barcoding to assess New Zealand's terrestrial biodiversity. , 2017, 41, .		15
82	Plant host drives fungal phenology. Fungal Ecology, 2010, 3, 311-315.	1.6	13
83	Pine invasion drives loss of soil fungal diversity. Biological Invasions, 2022, 24, 401-414.	2.4	13
84	Environmental and plant community drivers of plant pathogen composition and richness. New Phytologist, 2022, 233, 496-504.	7.3	13
85	Phosphorus deficiency, plant growth and the phosphorus efficiency index. Functional Ecology, 1999, 13, 733-736.	3.6	12
86	Loss of functional diversity and network modularity in introduced plant-fungal symbioses. AoB PLANTS, 2016, , plw084.	2.3	12
87	Soil sample pooling generates no consistent inference bias: a metaâ€nnalysis of 71 plant–soil feedback experiments. New Phytologist, 2021, 231, 1308-1315.	7.3	12
88	Communityâ€level direct and indirect impacts of an invasive plant favour exotic over native species. Journal of Ecology, 2020, 108, 2499-2510.	4.0	12
89	Comment on "Conspecific Negative Density Dependence and Forest Diversity― Science, 2012, 338, 469-469.	12.6	11
90	Oomycetes along a 120,000 year temperate rainforest ecosystem development chronosequence. Fungal Ecology, 2019, 39, 192-200.	1.6	10

#	Article	IF	Citations
91	Virulence of the plant-associated endophytic fungus <i>Lecanicillium muscarium </i> to diamondback moth larvae. New Zealand Plant Protection, 0, 72, 253-259.	0.3	10
92	Exotic plants accumulate and share herbivores yet dominate communities via rapid growth. Nature Communications, 2021, 12, 2696.	12.8	9
93	Commercial forests: Native advantage. Science, 2015, 349, 1176-1176.	12.6	7
94	Contrasting responses of soil nematode communities to native and non-native woody plant expansion. Oecologia, 2019, 190, 891-899.	2.0	7
95	Land use, but not distance, drives fungal beta diversity. Ecology, 2021, 102, e03487.	3.2	7
96	Influences of Established Trees on Mycorrhizas, Nutrition, and Growth of Quercus rubra Seedlings. Ecological Monographs, 2002, 72, 505.	5.4	7
97	Kit-Based, Low-Toxicity Method for Extracting and Purifying Fungal DNA from Ectomycorrhizal Roots. BioTechniques, 2002, 32, 52-56.	1.8	6
98	Deep thoughts on ectomycorrhizal fungal communities. New Phytologist, 2014, 201, 1083-1085.	7.3	6
99	Hierarchical neighbor effects on mycorrhizal community structure and function. Ecology and Evolution, 2016, 6, 5416-5430.	1.9	6
100	Response to Comment on "Conspecific Negative Density Dependence and Forest Diversity― Science, 2012, 338, 469-469.	12.6	5
101	What can possibly go wrong?: The risks of introducing soil microorganisms from Antarctica into South America. Bosque, 2015, 36, 343-346.	0.3	4
102	High Maintenance of Rhizosphere Soil C and N Equilibrium Regardless of Plant Species or Species Traits. Frontiers in Soil Science, 2021, 1, .	2.2	4
103	Rare species of woodâ€inhabiting fungi are not local. Ecological Applications, 2020, 30, e02156.	3.8	3
104	Conspecific negative density dependence does not explain coexistence in a tropical Afromontane forest. Journal of Vegetation Science, 2021, 32, .	2.2	3
105	Community- and trophic-level responses of soil nematodes to removal of a non-native tree at different stages of invasion. PLoS ONE, 2020, 15, e0227130.	2.5	2
106	Developing the Plan for Growth to go 'beyond carbon'. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 2011, 164, 221-225.	0.8	1
107	Collembola in Southland beech litter and soil. New Zealand Entomologist, 2015, 38, 79-87.	0.3	1
108	Native and exotic grasses share generalist foliar fungi in a Canterbury high country grassland. New Zealand Journal of Ecology, 0, , .	1.1	0

#	Article	IF	CITATIONS
109	A risk to the forestry industry? Invasive pines as hosts of foliar fungi and potential pathogens. New Zealand Journal of Ecology, 0, , .	1.1	О
110	Title is missing!. , 2020, 15, e0227130.		0
111	Title is missing!. , 2020, 15, e0227130.		O
112	Title is missing!. , 2020, 15, e0227130.		0
113	Title is missing!. , 2020, 15, e0227130.		O
114	Title is missing!. , 2020, 15, e0227130.		0
115	Title is missing!. , 2020, 15, e0227130.		O