Andrei Thomas-Tikhonenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3707095/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulation of CD22 Protein Expression in Childhood Leukemia by Pervasive Splicing Aberrations: Implications for CD22-Directed Immunotherapies. Blood Cancer Discovery, 2022, 3, 103-115.	5.0	31
2	Targeting CD123 in blastic plasmacytoid dendritic cell neoplasm using allogeneic anti-CD123 CAR T cells. Nature Communications, 2022, 13, 2228.	12.8	14
3	Identifying common transcriptome signatures of cancer by interpreting deep learning models. Genome Biology, 2022, 23, 117.	8.8	11
4	Colorectal Cancer-Associated Smad4 R361 Hotspot Mutations Boost Wnt/β-Catenin Signaling through Enhanced Smad4–LEF1 Binding. Molecular Cancer Research, 2021, 19, 823-833.	3.4	4
5	MOCCASIN: a method for correcting for known and unknown confounders in RNA splicing analysis. Nature Communications, 2021, 12, 3353.	12.8	12
6	Direct long-read RNA sequencing identifies a subset of questionable exitrons likely arising from reverse transcription artifacts. Genome Biology, 2021, 22, 190.	8.8	20
7	RNA-binding proteins of COSMIC importance in cancer. Journal of Clinical Investigation, 2021, 131, .	8.2	15
8	MYC Hyperactivates Wnt Signaling in <i>APC</i> / <i>CTNNB1</i> -Mutated Colorectal Cancer Cells through miR-92a–Dependent Repression of <i>DKK3</i> . Molecular Cancer Research, 2021, 19, 2003-2014.	3.4	9
9	Tilting MYC toward cancer cell death. Trends in Cancer, 2021, 7, 982-994.	7.4	12
10	Identification of a Conserved Intracellular Loop (CIL) Structure That Scaffolds PIP3 to Amplify Oncogenic Signaling during Malignant B-Cell Transformation. Blood, 2021, 138, 868-868.	1.4	0
11	Retention of CD19 intron 2 contributes to CART-19 resistance in leukemias with subclonal frameshift mutations in CD19. Leukemia, 2020, 34, 1202-1207.	7.2	61
12	IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in BÂcells. Nature, 2020, 588, 491-497.	27.8	57
13	Transient stabilization, rather than inhibition, of MYC amplifies extrinsic apoptosis and therapeutic responses in refractory B-cell lymphoma. Leukemia, 2019, 33, 2429-2441.	7.2	24
14	CAR T-cell therapy is effective for CD19-dim B-lymphoblastic leukemia but is impacted by prior blinatumomab therapy. Blood Advances, 2019, 3, 3539-3549.	5.2	145
15	Escape From ALL-CARTaz. Cancer Journal (Sudbury, Mass), 2019, 25, 217-222.	2.0	20
16	Pipeline for Discovering Neoepitopes Generated By Alternative Splicing in B-ALL. Blood, 2019, 134, 1342-1342.	1.4	2
17	Aberrant splicing in B-cell acute lymphoblastic leukemia. Nucleic Acids Research, 2018, 46, 11357-11369.	14.5	39
18	Exons of Leukemia Suppressor Genes: Creative Assembly Required. Trends in Cancer, 2018, 4, 796-798.	7.4	2

#	Article	IF	CITATIONS
19	Heterogeneity of surface CD19 and CD22 expression in B lymphoblastic leukemia. American Journal of Hematology, 2018, 93, E352-E355.	4.1	44
20	CD19 Alterations Emerging after CD19-Directed Immunotherapy Cause Retention of the Misfolded Protein in the Endoplasmic Reticulum. Molecular and Cellular Biology, 2018, 38, .	2.3	55
21	The Impact of Immunotherapy on Tumor Evolution. Blood, 2018, 132, SCI-18-SCI-18.	1.4	Ο
22	Repeated loss of target surface antigen after immunotherapy in primary mediastinal large B cell lymphoma. American Journal of Hematology, 2017, 92, E11-E13.	4.1	78
23	miR-17-92 cluster components analysis in Burkitt lymphoma: overexpression of miR-17 is associated with poor prognosis. Annals of Hematology, 2016, 95, 881-891.	1.8	37
24	Convergence of Acquired Mutations and Alternative Splicing of <i>CD19</i> Enables Resistance to CART-19 Immunotherapy. Cancer Discovery, 2015, 5, 1282-1295.	9.4	997
25	Regulation of CD19 Exon 2 Inclusion in B-Lymphoid Cells By Splicing Factors and Epigenetic Marks. Blood, 2015, 126, 2425-2425.	1.4	3
26	The Importance of CD19 Exon 2 for Surface Localization: Closing the Ig-like Loop. Blood, 2015, 126, 3433-3433.	1.4	3
27	Abstract B33: Transient upregulation of Myc with GSK3- \hat{l}^2 inhibitors in B-cell lymphomas enhances p53-independent apoptotic responses to chemotherapy. , 2015, , .		0
28	Masking Epistasis Between MYC and TGF-β Pathways in Antiangiogenesis-Mediated Colon Cancer Suppression. Journal of the National Cancer Institute, 2014, 106, dju043.	6.3	15
29	MYC and the Art of MicroRNA Maintenance. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a014175-a014175.	6.2	51
30	The Myc-miR-17-92 axis amplifies B-cell receptor signaling via inhibition of ITIM proteins: a novel lymphomagenic feed-forward loop. Blood, 2013, 122, 4220-4229.	1.4	70
31	Targeting of TGFÂ signature and its essential component CTGF by miR-18 correlates with improved survival in glioblastoma. Rna, 2013, 19, 177-190.	3.5	45
32	ER stress–mediated autophagy promotes Myc-dependent transformation and tumor growth. Journal of Clinical Investigation, 2012, 122, 4621-4634.	8.2	336
33	CD19 is a major B cell receptor–independent activator of MYC-driven B-lymphomagenesis. Journal of Clinical Investigation, 2012, 122, 2257-2266.	8.2	87
34	Myc overexpression brings out unexpected antiapoptotic effects of miR-34a. Oncogene, 2011, 30, 2587-2594.	5.9	73
35	Shielding the messenger (RNA): microRNA-based anticancer therapies. , 2011, 131, 18-32.		52
36	Inhibition of the Single Downstream Target BAG1 Activates the Latent Apoptotic Potential of MYC. Molecular and Cellular Biology, 2011, 31, 5037-5045.	2.3	18

#	Article	IF	CITATIONS
37	p53-Responsive miR-194 Inhibits Thrombospondin-1 and Promotes Angiogenesis in Colon Cancers. Cancer Research, 2011, 71, 7490-7501.	0.9	144
38	The long reach of noncoding RNAs. Nature Genetics, 2011, 43, 616-617.	21.4	16
39	The Myc–miR-17â^¼92 Axis Blunts TGFβ Signaling and Production of Multiple TGFβ-Dependent Antiangiogenic Factors. Cancer Research, 2010, 70, 8233-8246.	0.9	248
40	The miR-17-92 MicroRNA Cluster Regulates Multiple Components of the TGF-β Pathway in Neuroblastoma. Molecular Cell, 2010, 40, 762-773.	9.7	279
41	Myc and Control of Tumor Neovascularization. , 2010, , 167-187.		1
42	Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3384-3389.	7.1	355
43	Regulation of CLU Gene Expression by Oncogenes and Epigenetic Factors. Advances in Cancer Research, 2009, 105, 115-132.	5.0	40
44	Clusterin, a Haploinsufficient Tumor Suppressor Gene in Neuroblastomas. Journal of the National Cancer Institute, 2009, 101, 663-677.	6.3	87
45	Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genetics, 2008, 40, 43-50.	21.4	1,203
46	c-Myb oncoprotein is an essential target of the dleu2 tumor suppressor microRNA cluster. Cancer Biology and Therapy, 2008, 7, 1758-1764.	3.4	54
47	PAX5 and B-cell neoplasms: transformation through presentation. Future Oncology, 2008, 4, 5-9.	2.4	7
48	Raf inhibitor stabilizes receptor for the type I interferon but inhibits its anti-proliferative effects in human malignant melanoma cells. Cancer Biology and Therapy, 2007, 6, 1433-1437.	3.4	24
49	Aiding and ABT'ing treatment for glioblastoma. Cancer Biology and Therapy, 2007, 6, 802-804.	3.4	1
50	Role of GLI2 Transcription Factor in Growth and Tumorigenicity of Prostate Cells. Cancer Research, 2007, 67, 10642-10646.	0.9	78
51	p53 status dictates responses of B lymphomas to monotherapy with proteasome inhibitors. Blood, 2007, 109, 4936-4943.	1.4	29
52	Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. Journal of Clinical Investigation, 2007, 117, 326-336.	8.2	983
53	Oncogenic BRAF regulates β-Trcp expression and NF-κB activity in human melanoma cells. Oncogene, 2007, 26, 1954-1958.	5.9	94
54	B-Lymphoma cells with epigenetic silencing of Pax5 trans-differentiate into macrophages, but not other hematopoietic lineages. Experimental Cell Research, 2007, 313, 331-340.	2.6	11

#	Article	IF	CITATIONS
55	B cell activator PAX5 promotes lymphomagenesis through stimulation of B cell receptor signaling. Journal of Clinical Investigation, 2007, 117, 2602-2610.	8.2	37
56	Infection & Neoplastic Growth 101. Cancer Treatment and Research, 2006, , 167-197.	0.5	6
57	Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 2006, 38, 1060-1065.	21.4	1,000
58	Kit-activating mutations in AML: Lessons from PU.1-induced murine erythroleukemia. Cancer Biology and Therapy, 2006, 5, 579-581.	3.4	4
59	Activation of Transferrin Receptor 1 by c-Myc Enhances Cellular Proliferation and Tumorigenesis. Molecular and Cellular Biology, 2006, 26, 2373-2386.	2.3	210
60	Epigenetic Histone Modifications Do Not Control Igκ Locus Contraction and Intranuclear Localization in Cells with Dual B Cell-Macrophage Potential. Journal of Immunology, 2006, 177, 6165-6171.	0.8	7
61	Functional Validation of Genes Implicated in Lymphomagenesis: Anin VivoSelection Assay Using a Myc-Induced B-Cell Tumor. Annals of the New York Academy of Sciences, 2005, 1059, 145-159.	3.8	45
62	Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-MYC oncoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13968-13973.	7.1	111
63	Inactivation of Myc in Murine Two-Hit B lymphomas Causes Dormancy with Elevated Levels of Interleukin 10 Receptor and CD20: Implications for Adjuvant Therapies. Cancer Research, 2005, 65, 5454-5461.	0.9	29
64	Targeting β-Transducin Repeat–Containing Protein E3 Ubiquitin Ligase Augments the Effects of Antitumor Drugs on Breast Cancer Cells. Cancer Research, 2005, 65, 1904-1908.	0.9	51
65	Myc-Transformed Epithelial Cells Down-Regulate Clusterin, Which Inhibits Their Growth in Vitro and Carcinogenesis in Vivo. Cancer Research, 2004, 64, 3126-3136.	0.9	68
66	Direct Repression of <i>FLIP</i> Expression by c-myc Is a Major Determinant of TRAIL Sensitivity. Molecular and Cellular Biology, 2004, 24, 8541-8555.	2.3	227
67	Whence Thrombospondin?. Cancer Biology and Therapy, 2004, 3, 406-407.	3.4	3
68	B cell–specific loss of histone 3 lysine 9 methylation in the VH locus depends on Pax5. Nature Immunology, 2004, 5, 853-861.	14.5	113
69	Infection and cancer: the common vein. Cytokine and Growth Factor Reviews, 2003, 14, 67-77.	7.2	31
70	Oscillation between B-lymphoid and myeloid lineages in Myc-induced hematopoietic tumors following spontaneous silencing/reactivation of the EBF/Pax5 pathway. Blood, 2003, 101, 1950-1955.	1.4	58
71	An essential role of Th1 responses and interferon gamma in infection-mediated suppression of neoplastic growth. Cancer Biology and Therapy, 2003, 2, 687-93.	3.4	17
72	Poisoning the Messengers: Could Tumor Endothelial Cells Acquire Drug Resistance. Cancer Biology and Therapy, 2002, 1, 266-267.	3.4	0

#	Article	IF	CITATIONS
73	A non-transgenic mouse model for B-cell lymphoma: in vivo infection of p53-null bone marrow progenitors by a Myc retrovirus is sufficient for tumorigenesis. Oncogene, 2002, 21, 1922-1927.	5.9	51
74	Intratumoral delivery of an interferon gamma retrovirus-producing cells inhibits growth of a murine melanoma by a non-immune mechanism. Cancer Letters, 2001, 173, 145-154.	7.2	8
75	Cutting Edge: Systemic Inhibition of Angiogenesis Underlies Resistance to Tumors During Acute Toxoplasmosis. Journal of Immunology, 2001, 166, 5878-5881.	0.8	65
76	Activation of the Myc oncoprotein leads to increased turnover of thrombospondin-1 mRNA. Nucleic Acids Research, 2000, 28, 2268-2275.	14.5	76
77	Viral Myc Oncoproteins in Infected Fibroblasts Down-modulate Thrombospondin-1, a Possible Tumor Suppressor Gene. Journal of Biological Chemistry, 1996, 271, 30741-30747.	3.4	80
78	gag as well as myc sequences contribute to the transforming phenotype of the avian retrovirus FH3. Journal of Virology, 1992, 66, 946-955.	3.4	20
79	Long terminal repeats of dwarf hamster endogenous retrovirus are highly diverged and do not maintain efficient transcription. Virology, 1991, 181, 367-370.	2.4	4
80	Avian endogenous provirus (ev-3) env gene sequencing: Implication for pathogenic retrovirus origination. Virus Genes, 1990, 3, 251-258.	1.6	6
81	Molecular cloning and primary structure analysis of the mouse mammary tumor virus-related element from dwarf hamster genome. Virus Genes, 1990, 3, 259-261.	1.6	3
82	Distribution of mouse mammary tumor virus-related sequences does not correlate with the taxonomic position of their hosts. Virus Genes, 1990, 4, 85-92.	1.6	4