S M A Hakim Siddiki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3706038/publications.pdf

Version: 2024-02-01

83 papers

2,834 citations

32 h-index 51 g-index

102 all docs

102 docs citations

102 times ranked

3249 citing authors

#	Article	IF	CITATIONS
1	Heterogeneous Ni Catalysts for N-Alkylation of Amines with Alcohols. ACS Catalysis, 2013, 3, 998-1005.	11.2	179
2	Heterogeneous Pt Catalysts for Reductive Amination of Levulinic Acid to Pyrrolidones. ACS Catalysis, 2014, 4, 3045-3050.	11.2	142
3	Size- and support-dependent Pt nanocluster catalysis for oxidant-free dehydrogenation of alcohols. Journal of Catalysis, 2013, 304, 63-71.	6.2	125
4	Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts. Green Chemistry, 2018, 20, 2933-2952.	9.0	114
5	Acceptor-free dehydrogenation of secondary alcohols by heterogeneous cooperative catalysis between Ni nanoparticles and acid–base sites of alumina supports. Journal of Catalysis, 2013, 300, 242-250.	6.2	104
6	<i>C< $/$ i>-Methylation of Alcohols, Ketones, and Indoles with Methanol Using Heterogeneous Platinum Catalysts. ACS Catalysis, 2018, 8, 3091-3103.	11.2	85
7	Low-Temperature Hydrogenation of CO ₂ to Methanol over Heterogeneous TiO ₂ -Supported Re Catalysts. ACS Catalysis, 2019, 9, 3685-3693.	11.2	82
8	Rheniumâ€Loaded TiO ₂ : A Highly Versatile and Chemoselective Catalyst for the Hydrogenation of Carboxylic Acid Derivatives and the Nâ€Methylation of Amines Using H ₂ and CO ₂ . Chemistry - A European Journal, 2017, 23, 14848-14859.	3.3	76
9	Sustainable Heterogeneous Platinum Catalyst for Direct Methylation of Secondary Amines by Carbon Dioxide and Hydrogen. Chemistry - A European Journal, 2014, 20, 6264-6267.	3.3	70
10	Direct synthesis of quinazolinones by acceptorless dehydrogenative coupling of o-aminobenzamide and alcohols by heterogeneous Pt catalysts. Catalysis Science and Technology, 2014, 4, 1716-1719.	4.1	70
11	Heterogeneous Pt and MoO _{<i>x</i>} Co-Loaded TiO ₂ Catalysts for Low-Temperature CO ₂ Hydrogenation To Form CH ₃ OH. ACS Catalysis, 2019, 9, 8187-8196.	11.2	66
12	N-alkylation of ammonia and amines with alcohols catalyzed by Ni-loaded CaSiO3. Catalysis Today, 2014, 232, 134-138.	4.4	61
13	Acceptorless Dehydrogenative Synthesis of Pyrimidines from Alcohols and Amidines Catalyzed by Supported Platinum Nanoparticles. ACS Catalysis, 2018, 8, 11330-11341.	11.2	58
14	Acceptorless dehydrogenative synthesis of benzothiazoles and benzimidazoles from alcohols or aldehydes by heterogeneous Pt catalysts under neutral conditions. Tetrahedron Letters, 2015, 56, 4885-4888.	1.4	56
15	Hydrodeoxygenation of Fatty Acids, Triglycerides, and Ketones to Liquid Alkanes by a Pt–MoO _{<i>x</i>} /TiO _{Catalyst. ChemCatChem, 2017, 9, 2822-2827.}	3.7	53
16	Lewis Acid Catalysis of Nb ₂ O ₅ for Reactions of Carboxylic Acid Derivatives in the Presence of Basic Inhibitors. ChemCatChem, 2019, 11, 383-396.	3.7	53
17	General and Selective Câ€3 Alkylation of Indoles with Primary Alcohols by a Reusable Pt Nanocluster Catalyst. Chemistry - A European Journal, 2013, 19, 14416-14419.	3.3	52
18	Alkylation of 2-methylquinoline with alcohols under additive-free conditions by Al2O3-supported Pt catalyst. Tetrahedron Letters, 2013, 54, 6490-6493.	1.4	48

#	Article	IF	Citations
19	N-Methylation of amines and nitroarenes with methanol using heterogeneous platinum catalysts. Journal of Catalysis, 2019, 371, 47-56.	6.2	48
20	C-3 alkylation of oxindole with alcohols by Pt/CeO ₂ catalyst in additive-free conditions. Catalysis Science and Technology, 2014, 4, 1064-1069.	4.1	46
21	TiO ₂ â€6upported Re as a General and Chemoselective Heterogeneous Catalyst for Hydrogenation of Carboxylic Acids to Alcohols. Chemistry - A European Journal, 2017, 23, 1001-1006.	3.3	45
22	Amidation of Carboxylic Acids with Amines by Nb ₂ O ₅ as a Reusable Lewis Acid Catalyst. ChemCatChem, 2015, 7, 3555-3561.	3.7	43
23	Lewis Acid-Promoted Heterogeneous Platinum Catalysts for Hydrogenation of Amides to Amines. ChemistrySelect, 2016, 1, 736-740.	1.5	42
24	Fe3+-exchanged clay catalyzed transamidation of amides with amines under solvent-free condition. Tetrahedron Letters, 2014, 55, 1316-1319.	1.4	40
25	A Heterogeneous Niobium(V) Oxide Catalyst for the Direct Amidation of Esters. ChemCatChem, 2015, 7, 2705-2710.	3.7	40
26	Selective N-alkylation of indoles with primary alcohols using a Pt/HBEA catalyst. Green Chemistry, 2015, 17, 173-177.	9.0	40
27	Hydrodeoxygenation of sulfoxides to sulfides by a Pt and MoO _x co-loaded TiO ₂ catalyst. Green Chemistry, 2016, 18, 2554-2560.	9.0	39
28	Acceptorless dehydrogenation of N -heterocycles by supported Pt catalysts. Catalysis Today, 2017, 281, 507-511.	4.4	38
29	Synthesis of 2,5-disubstituted pyrroles via dehydrogenative condensation of secondary alcohols and 1,2-amino alcohols by supported platinum catalysts. Organic Chemistry Frontiers, 2016, 3, 846-851.	4.5	35
30	Versatile and Sustainable Synthesis of Cyclic Imides from Dicarboxylic Acids and Amines by Nb ₂ O ₅ as a Baseâ€₹olerant Heterogeneous Lewis Acid Catalyst. Chemistry - A European Journal, 2014, 20, 14256-14260.	3.3	34
31	Self-coupling of secondary alcohols by Ni/CeO2 catalyst. Applied Catalysis A: General, 2013, 462-463, 137-142.	4.3	33
32	CeO2 as a versatile and reusable catalyst for transesterification of esters with alcohols under solvent-free conditions. Green Chemistry, 2013, 15, 1641.	9.0	33
33	Acceptorless dehydrogenative coupling of primary alcohols to esters by heterogeneous Pt catalysts. Catalysis Science and Technology, 2014, 4, 3631-3635.	4.1	33
34	Analysis of Updated Literature Data up to 2019 on the Oxidative Coupling of Methane Using an Extrapolative Machineâ€Learning Method to Identify Novel Catalysts. ChemCatChem, 2021, 13, 3636-3655.	3.7	33
35	Versatile and sustainable alcoholysis of amides by a reusable CeO ₂ catalyst. RSC Advances, 2014, 4, 35803-35807.	3.6	32
36	Acceptorless dehydrogenative synthesis of 2-substituted quinazolines from 2-aminobenzylamine with primary alcohols or aldehydes by heterogeneous Pt catalysts. RSC Advances, 2014, 4, 53374-53379.	3.6	30

#	Article	IF	CITATIONS
37	Direct Olefination of Alcohols with Sulfones by Using Heterogeneous Platinum Catalysts. Chemistry - A European Journal, 2016, 22, 6111-6119.	3.3	30
38	Direct Synthesis of Lactams from Keto Acids, Nitriles, and H ₂ by Heterogeneous Pt Catalysts. ChemCatChem, 2018, 10, 789-795.	3.7	28
39	Origin of Nb ₂ O ₅ Lewis Acid Catalysis for Activation of Carboxylic Acids in the Presence of a Hard Base. ChemPhysChem, 2018, 19, 2848-2857.	2.1	28
40	Oxidantâ€free Dehydrogenation of Glycerol to Lactic Acid by Heterogeneous Platinum Catalysts. ChemCatChem, 2017, 9, 2816-2821.	3.7	26
41	High-silica \hat{H}^2 zeolites for catalytic hydration of hydrophobic epoxides and alkynes in water. Journal of Catalysis, 2018, 368, 145-154.	6.2	26
42	Mechanistic study of the selective hydrogenation of carboxylic acid derivatives over supported rhenium catalysts. Catalysis Science and Technology, 2019, 9, 5413-5424.	4.1	25
43	Selective Transformations of Triglycerides into Fatty Amines, Amides, and Nitriles by using Heterogeneous Catalysis. ChemSusChem, 2019, 12, 3115-3125.	6.8	25
44	Catalytic Methylation of <i>m</i> -Xylene, Toluene, and Benzene Using CO ₂ and H ₂ over TiO ₂ -Supported Re and Zeolite Catalysts: Machine-Learning-Assisted Catalyst Optimization. ACS Catalysis, 2021, 11, 5829-5838.	11.2	25
45	Self-Coupling of Secondary Alcohols and \hat{l}_{\pm} -Alkylation of Methyl Ketones with Secondary Alcohols by Pt/CeO2 Catalyst. Topics in Catalysis, 2014, 57, 1042-1048.	2.8	24
46	Catalytic Methylation of Aromatic Hydrocarbons using CO ₂ /H ₂ over Re/TiO ₂ and Hâ€MOR Catalysts. ChemCatChem, 2020, 12, 2215-2220.	3.7	24
47	Heterogeneous catalysts for the cyclization of dicarboxylic acids to cyclic anhydrides as monomers for bioplastic production. Green Chemistry, 2017, 19, 3238-3242.	9.0	22
48	Esterification of Tertiary Amides by Alcohols Through Câ^'N Bond Cleavage over CeO ₂ . ChemCatChem, 2019, 11, 449-456.	3.7	21
49	Acetalization of glycerol with ketones and aldehydes catalyzed by high silica $H\hat{l}^2$ zeolite. Molecular Catalysis, 2019, 479, 110608.	2.0	20
50	Reverse water-gas shift reaction over Pt/MoO _x /TiO ₂ : reverse Mars–van Krevelen mechanism <i>via</i> redox of supported MoO _x . Catalysis Science and Technology, 2021, 11, 4172-4180.	4.1	20
51	Heterogeneous Platinum Catalysts for Direct Synthesis of Trimethylamine by <i>N</i> -Methylation of Ammonia and Its Surrogates with CO ₂ /H ₂ . Chemistry Letters, 2017, 46, 68-70.	1.3	19
52	Synthesis of indoles via dehydrogenative N-heterocyclization by supported platinum catalysts. RSC Advances, 2015, 5, 1059-1062.	3.6	18
53	Catalytic hydrolysis of hydrophobic esters on/in water by high-silica large pore zeolites. Journal of Catalysis, 2016, 344, 741-748.	6.2	18
54	The Catalytic Reduction of Carboxylic Acid Derivatives and CO ₂ by Metal Nanoparticles on Lewisâ€Acidic Supports. Chemical Record, 2018, 18, 1374-1393.	5.8	18

#	Article	IF	Citations
55	Hydrolysis of amides to carboxylic acids catalyzed by Nb ₂ O ₅ . Catalysis Science and Technology, 2021, 11, 1949-1960.	4.1	18
56	Direct Phenolysis Reactions of Unactivated Amides into Phenolic Esters Promoted by a Heterogeneous CeO ₂ Catalyst. Chemistry - A European Journal, 2019, 25, 10594-10605.	3.3	17
57	High-silica $H\hat{I}^2$ zeolite catalyzed methanolysis of triglycerides to form fatty acid methyl esters (FAMEs). Fuel Processing Technology, 2020, 197, 106204.	7.2	17
58	Combined theoretical and experimental study on alcoholysis of amides on CeO2 surface: A catalytic interplay between Lewis acid and base sites. Catalysis Today, 2018, 303, 256-262.	4.4	13
59	Reverse Water-Gas Shift Reaction via Redox of Re Nanoclusters Supported on TiO2. Chemistry Letters, 2021, 50, 158-161.	1.3	11
60	Selective C3-alkenylation of oxindole with aldehydes using heterogeneous CeO2 catalyst. Chinese Journal of Catalysis, 2020, 41, 970-976.	14.0	9
61	Experimental and Theoretical Investigation of Metal–Support Interactions in Metal-Oxide-Supported Rhenium Materials. Journal of Physical Chemistry C, 2022, 126, 4472-4482.	3.1	5
62	Transesterification of Ethyl-10-undecenoate Using a Cu-Deposited V2O5 Catalyst as a Model Reaction for Efficient Conversion of Plant Oils to Monomers and Fine Chemicals. ACS Omega, 2022, 7, 4372-4380.	3.5	4
63	Direct synthesis of triazines from alcohols and amidines using supported Pt nanoparticle catalysts <i>via</i> the acceptorless dehydrogenative methodology. Catalysis Science and Technology, 2022, 12, 4679-4687.	4.1	4
64	Stereocontrol in Radical Cyclization: Change in Rate-Determining Step. Organic Letters, 2010, 12, 3626-3629.	4.6	3
65	TiO2 -Supported Re as a General and Chemoselective Heterogeneous Catalyst for Hydrogenation of Carboxylic Acids to Alcohols. Chemistry - A European Journal, 2017, 23, 980-980.	3.3	3
66	Challenges and future prospects in heterogeneous catalysis for biorefinery technologies. , 2020, , 225-250.		3
67	Carbanion vs. Carbon Radical in Tandem 1,4-Addition to Two Connected Units of Acrylate or Methacrylate. Bulletin of the Chemical Society of Japan, 2007, 80, 2011-2013.	3.2	2
68	Ring Closing Metathesis Using Chiral Template Consisting of Hard and Soft Parts. Macromolecular Symposia, 2010, 293, 10-14.	0.7	2
69	Dehydrogenative Synthesis of Benzazoles with Platinum Catalysts. Synfacts, 2015, 11, 1116-1116.	0.0	1
70	Niobic Acid Catalyzed Cyclization of Dicarboxylic Acids. Synfacts, 2017, 13, 1109.	0.0	1
71	Catalytic Methylation of Benzene over Pt/MoOx/TiO2 and Zeolite Catalyst Using CO2 and H2. Chemistry Letters, 2022, 51, 149-152.	1.3	1
72	Dehydrative Alkylation of 2-Methylquinoline with Alcohols Using Pt/Al2O3. Synfacts, 2013, 10, 0098-0098.	0.0	0

#	Article	IF	Citations
7 3	Transamidation of Amides Catalyzed by Fe-Mont. Synfacts, 2014, 10, 0540-0540.	0.0	O
74	N-Methylation of Secondary Amines with CO2 and H2 Using Pt-MoOx/TiO2. Synfacts, 2014, 10, 0998-0998.	0.0	0
75	Direct Olefination of Alcohols with Sulfones on Pt/C Nanoparticles. Synfacts, 2016, 12, 0760-0760.	0.0	O
76	Platinum–Molybdenum Oxide/Titania-Catalyzed Reduction of Sulfoxides. Synfacts, 2016, 12, 0758-0758.	0.0	0
77	Hydrogenation of Carboxylic Acid Derivatives and N-Alkylation of Amines. Synfacts, 2018, 14, 0106.	0.0	O
78	Origin of Nb2 O5 Lewis Acid Catalysis for Activation of Carboxylic Acids in the Presence of a Hard Base. ChemPhysChem, 2018, 19, 2809-2809.	2.1	0
79	Direct Phenolysis Reactions of Unactivated Amides into Phenolic Esters Promoted by a Heterogeneous CeO 2 Catalyst. Chemistry - A European Journal, 2019, 25, 10515-10515.	3.3	O
80	Synthesis of Pyrimidines from Alcohols and Amidines on Pt/C Nanoparticles. Synfacts, 2019, 15, 0288.	0.0	0
81	Cerium(IV) Oxide-Catalyzed Direct Phenolysis of Amides. Synfacts, 2019, 15, 1298.	0.0	O
82	Esterification of Tertiary Amides by Alcohols Through Câ^'N Bond Cleavage over CeO 2. ChemCatChem, 2019, 11, 15-15.	3.7	0
83	Highly Î ² -Selective Glycosylation Reactions for the Synthesis of ω-Functionalized Alkyl Î ² -Maltoside as a Co-crystallizing Detergent. Russian Journal of Organic Chemistry, 2020, 56, 1806-1814.	0.8	O