
Timothy C Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3705676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 2016, 1, .	48.7	1,490
2	Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 26-39.	6.7	518
3	High Efficiency Adsorption and Removal of Selenate and Selenite from Water Using Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 7488-7494.	13.7	330
4	Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory. Journal of the American Chemical Society, 2015, 137, 3585-3591.	13.7	329
5	Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000. Nature Protocols, 2016, 11, 149-162.	12.0	276
6	Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 1977-1982.	13.7	273
7	Temperature Treatment of Highly Porous Zirconium-Containing Metal–Organic Frameworks Extends Drug Delivery Release. Journal of the American Chemical Society, 2017, 139, 7522-7532.	13.7	269
8	Evaluation of BrÃ,nsted acidity and proton topology in Zr- and Hf-based metal–organic frameworks using potentiometric acid–base titration. Journal of Materials Chemistry A, 2016, 4, 1479-1485.	10.3	259
9	Mechanochemical and solvent-free assembly of zirconium-based metal–organic frameworks. Chemical Communications, 2016, 52, 2133-2136.	4.1	256
10	Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage. Energy and Environmental Science, 2016, 9, 3279-3289.	30.8	231
11	Metal–Organic Framework Nodes as Nearly Ideal Supports for Molecular Catalysts: NU-1000- and UiO-66-Supported Iridium Complexes. Journal of the American Chemical Society, 2015, 137, 7391-7396.	13.7	228
12	Synthesis of nanocrystals of Zr-based metal–organic frameworks with csq-net: significant enhancement in the degradation of a nerve agent simulant. Chemical Communications, 2015, 51, 10925-10928.	4.1	194
13	<i>In Situ</i> Monitoring and Mechanism of the Mechanochemical Formation of a Microporous MOF-74 Framework. Journal of the American Chemical Society, 2016, 138, 2929-2932.	13.7	194
14	Catalytic chemoselective functionalization of methane in a metalâ^'organic framework. Nature Catalysis, 2018, 1, 356-362.	34.4	153
15	Tuning Zr ₆ Metal–Organic Framework (MOF) Nodes as Catalyst Supports: Site Densities and Electron-Donor Properties Influence Molecular Iridium Complexes as Ethylene Conversion Catalysts. ACS Catalysis, 2016, 6, 235-247.	11.2	150
16	Ultraporous, Water Stable, and Breathing Zirconium-Based Metal–Organic Frameworks with ftw Topology. Journal of the American Chemical Society, 2015, 137, 13183-13190.	13.7	149
17	Metal–Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 28223-28230.	8.0	145
18	Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition. Chemistry of Materials, 2015, 27, 4772-4778.	6.7	116

TIMOTHY C WANG

#	Article	IF	CITATIONS
19	Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 33419-33428.	8.0	104
20	Charge Transport in Zirconium-Based Metal–Organic Frameworks. Accounts of Chemical Research, 2020, 53, 1187-1195.	15.6	100
21	G-quadruplex organic frameworks. Nature Chemistry, 2017, 9, 466-472.	13.6	99
22	Rendering High Surface Area, Mesoporous Metal–Organic Frameworks Electronically Conductive. ACS Applied Materials & Interfaces, 2017, 9, 12584-12591.	8.0	98
23	Stable Metal–Organic Framework-Supported Niobium Catalysts. Inorganic Chemistry, 2016, 55, 11954-11961.	4.0	85
24	Synthetic Access to Atomically Dispersed Metals in Metal–Organic Frameworks via a Combined Atomic-Layer-Deposition-in-MOF and Metal-Exchange Approach. Chemistry of Materials, 2016, 28, 1213-1219.	6.7	85
25	Thermal Stabilization of Metal–Organic Framework-Derived Single-Site Catalytic Clusters through Nanocasting. Journal of the American Chemical Society, 2016, 138, 2739-2748.	13.7	83
26	Regioselective Atomic Layer Deposition in Metal–Organic Frameworks Directed by Dispersion Interactions. Journal of the American Chemical Society, 2016, 138, 13513-13516.	13.7	78
27	Computational Screening of Nanoporous Materials for Hexane and Heptane Isomer Separation. Chemistry of Materials, 2017, 29, 6315-6328.	6.7	65
28	A visually detectable pH responsive zirconium metal–organic framework. Chemical Communications, 2016, 52, 3438-3441.	4.1	57
29	Installing Heterobimetallic Cobalt–Aluminum Single Sites on a Metal Organic Framework Support. Chemistry of Materials, 2016, 28, 6753-6762.	6.7	56
30	Efficient extraction of sulfate from water using a Zr-metal–organic framework. Dalton Transactions, 2016, 45, 93-97.	3.3	56
31	Inorganic "Conductive Glass―Approach to Rendering Mesoporous Metal–Organic Frameworks Electronically Conductive and Chemically Responsive. ACS Applied Materials & Interfaces, 2018, 10, 30532-30540.	8.0	54
32	Get the light out: nanoscaling MOFs for luminescence sensing and optical applications. Chemical Communications, 2019, 55, 4647-4650.	4.1	38
33	Tuning the properties of metal–organic framework nodes as supports of single-site iridium catalysts: node modification by atomic layer deposition of aluminium. Faraday Discussions, 2017, 201, 195-206.	3.2	30
34	Tunable Crystallinity and Charge Transfer in Twoâ€Dimensional Gâ€Quadruplex Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 3985-3989.	13.8	26
35	Calcium Vapor Adsorption on the Metal–Organic Framework NU-1000: Structure and Energetics. Journal of Physical Chemistry C, 2016, 120, 16850-16862.	3.1	16
36	Surviving Under Pressure: The Role of Solvent, Crystal Size, and Morphology During Pelletization of Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 52106-52112.	8.0	15

#	Article	IF	CITATIONS
37	Tunable Crystallinity and Charge Transfer in Twoâ€Dimensional Gâ€Quadruplex Organic Frameworks. Angewandte Chemie, 2018, 130, 4049-4053.	2.0	10
38	Extending the Compositional Range of Nanocasting in the Oxozirconium Cluster-Based Metal–Organic Framework NU-1000—A Comparative Structural Analysis. Chemistry of Materials, 2018, 30, 1301-1315.	6.7	10
39	Design Rules for Metalâ€Organic Framework Stability in Highâ€Pressure Hydrogen Environments. ChemPhysChem, 2019, 20, 1305-1310.	2.1	9
40	Electrolyte-Assisted Hydrogen Storage Reactions. Journal of Physical Chemistry C, 2018, 122, 26845-26850.	3.1	8
41	Correction to "Tuning Zr ₆ Metal-Organic Framework (MOF) Nodes as Catalyst Supports: Site Densities and Electron-Donor Properties Influence Molecular Iridium Complexes as Ethylene Conversion Catalysts†ACS Catalysis, 2018, 8, 2364-2364.	11.2	3