
Daniel Jacobsson Madsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/370551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interface dynamics and crystal phase switching in GaAs nanowires. Nature, 2016, 531, 317-322.	27.8	272
2	A General Approach for Sharp Crystal Phase Switching in InAs, GaAs, InP, and GaP Nanowires Using Only Group V Flow. Nano Letters, 2013, 13, 4099-4105.	9.1	156
3	III–V Nanowire Complementary Metal–Oxide Semiconductor Transistors Monolithically Integrated on Si. Nano Letters, 2015, 15, 7898-7904.	9.1	71
4	Direct Imaging of Atomic Scale Structure and Electronic Properties of GaAs Wurtzite and Zinc Blende Nanowire Surfaces. Nano Letters, 2013, 13, 4492-4498.	9.1	63
5	Confinement in Thickness-Controlled GaAs Polytype Nanodots. Nano Letters, 2015, 15, 2652-2656.	9.1	62
6	Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires. Physical Review B, 2014, 89, .	3.2	60
7	Strategies to obtain pattern fidelity in nanowire growth from large-area surfaces patterned using nanoimprint lithography. Nano Research, 2016, 9, 2852-2861.	10.4	56
8	High crystal quality wurtzite-zinc blende heterostructures in metal-organic vapor phase epitaxy-grown GaAs nanowires. Nano Research, 2012, 5, 470-476.	10.4	51
9	In situ analysis of catalyst composition during gold catalyzed GaAs nanowire growth. Nature Communications, 2019, 10, 4577.	12.8	49
10	Real-time, in situ, atomic scale observation of soot oxidation. Carbon, 2019, 145, 149-160.	10.3	49
11	Particle-assisted Ga _{<i>x</i>} In _{1â^'<i>x</i>} P nanowire growth for designed bandgap structures. Nanotechnology, 2012, 23, 245601.	2.6	48
12	Crystal phase control in GaAs nanowires: opposing trends in the Ga- and As-limited growth regimes. Nanotechnology, 2015, 26, 301001.	2.6	43
13	Bending and Twisting Lattice Tilt in Strained Core–Shell Nanowires Revealed by Nanofocused X-ray Diffraction. Nano Letters, 2017, 17, 4143-4150.	9.1	43
14	Control of composition and morphology in InGaAs nanowires grown by metalorganic vapor phase epitaxy. Journal of Crystal Growth, 2013, 383, 158-165.	1.5	39
15	GaAs/AlGaAs heterostructure nanowires studied by cathodoluminescence. Nano Research, 2014, 7, 473-490.	10.4	34
16	Low Trap Density in InAs/High- <i>k</i> Nanowire Gate Stacks with Optimized Growth and Doping Conditions. Nano Letters, 2016, 16, 2418-2425.	9.1	31
17	Independent Control of Nucleation and Layer Growth in Nanowires. ACS Nano, 2020, 14, 3868-3875.	14.6	31
18	Phase Transformation in Radially Merged Wurtzite GaAs Nanowires. Crystal Growth and Design, 2015, 15, 4795-4803.	3.0	27

DANIEL JACOBSSON MADSEN

#	Article	IF	CITATIONS
19	Magnetic Polarons and Large Negative Magnetoresistance in GaAs Nanowires Implanted with Mn Ions. Nano Letters, 2013, 13, 5079-5084.	9.1	26
20	Sn-Seeded GaAs Nanowires as Self-Assembled Radial <i>p–n</i> Junctions. Nano Letters, 2015, 15, 3757-3762.	9.1	25
21	Enhanced sputtering and incorporation of Mn in implanted GaAs and ZnO nanowires. Journal Physics D: Applied Physics, 2014, 47, 394003.	2.8	24
22	FIB Plan and Side View Cross-Sectional TEM Sample Preparation of Nanostructures. Microscopy and Microanalysis, 2014, 20, 133-140.	0.4	23
23	In situ metal-organic chemical vapour deposition growth of III–V semiconductor nanowires in the Lund environmental transmission electron microscope. Semiconductor Science and Technology, 2020, 35, 034004.	2.0	20
24	Kinetics of Au–Ga Droplet Mediated Decomposition of GaAs Nanowires. Nano Letters, 2019, 19, 3498-3504.	9.1	18
25	Vapor–solid–solid growth dynamics in GaAs nanowires. Nanoscale Advances, 2021, 3, 5928-5940.	4.6	16
26	Structural investigation of GaInP nanowires using X-ray diffraction. Thin Solid Films, 2013, 543, 100-105.	1.8	15
27	Limits of Ill–V Nanowire Growth Based on Droplet Dynamics. Journal of Physical Chemistry Letters, 2020, 11, 2949-2954.	4.6	14
28	Single GalnP nanowire p-i-n junctions near the direct to indirect bandgap crossover point. Applied Physics Letters, 2012, 100, 251103.	3.3	13
29	Zincblendeâ€toâ€wurtzite interface improvement by group III loading in Auâ€seeded GaAs nanowires. Physica Status Solidi - Rapid Research Letters, 2013, 7, 855-859.	2.4	13
30	Compositional Correlation between the Nanoparticle and the Growing Au-Assisted In _{<i>x</i>} Ga _{1–<i>x</i>} As Nanowire. Journal of Physical Chemistry Letters, 2021, 12, 7590-7595.	4.6	12
31	Enabling <i>In Situ</i> Studies of Metal-Organic Chemical Vapor Deposition in a Transmission Electron Microscope. Microscopy and Microanalysis, 2022, 28, 1484-1492.	0.4	11
32	Interface Dynamics in Ag–Cu ₃ P Nanoparticle Heterostructures. Journal of the American Chemical Society, 2022, 144, 248-258.	13.7	10
33	Crystal structure tuning in GaAs nanowires using HCl. Nanoscale, 2014, 6, 8257.	5.6	9
34	Magnetoresistance in Mn ion-implanted GaAs:Zn nanowires. Applied Physics Letters, 2014, 104, 153112.	3.3	8
35	Direct Observations of Twin Formation Dynamics in Binary Semiconductors. ACS Nanoscience Au, 2022, 2, 49-56.	4.8	8
36	Sn-seeded GaAs nanowires grown by MOVPE. Nanotechnology, 2016, 27, 215603.	2.6	7

#	Article	IF	CITATIONS
37	Time-resolved compositional mapping during in situ TEM studies. Ultramicroscopy, 2021, 222, 113193.	1.9	4
38	Raman characterization of single-crystalline Ga0.96Mn0.04As:Zn nanowires realized by ion-implantation. Nanotechnology, 2019, 30, 335202.	2.6	3
39	Post-nucleation evolution of the liquid–solid interface in nanowire growth. Nanotechnology, 2022, 33, 105607.	2.6	3
40	Evaluation of carrier density and mobility in Mn ion-implanted GaAs:Zn nanowires by Raman spectroscopy. Nanotechnology, 2020, 31, 205705.	2.6	2
41	Real-time in-situ Investigation of III-V Nanowire Growth using Custom-designed Hybrid Chemical Vapor Deposition-TEM. Microscopy and Microanalysis, 2017, 23, 1716-1717.	0.4	1
42	Directed Selfâ€Assembly for Dense Vertical III–V Nanowires on Si and Implications for Gate Allâ€Around Deposition. Advanced Electronic Materials, 2022, 8, .	5.1	1
43	Measuring Surface Tension of III-V Nanowire Au-Catalyst Droplets with an E-field. Microscopy and Microanalysis, 2021, 27, 27-28.	0.4	0