Maria Angela Sortino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3704675/publications.pdf

Version: 2024-02-01

54 papers

2,383 citations

28 h-index 214800 47 g-index

55 all docs 55 docs citations

55 times ranked 3467 citing authors

#	Article	IF	CITATIONS
1	TGF- \hat{l}^21 targets the GSK-3 \hat{l}^2/\hat{l}^2 -catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacological Research, 2008, 57, 274-282.	7.1	180
2	The Treatment of Impaired Wound Healing in Diabetes: Looking among Old Drugs. Pharmaceuticals, 2020, 13, 60.	3.8	180
3	Neurobiological links between depression and AD: The role of TGF $\hat{1}^21$ signaling as a new pharmacological target. Pharmacological Research, 2018, 130, 374-384.	7.1	126
4	Targeting Group II Metabotropic Glutamate (mGlu) Receptors for the Treatment of Psychosis Associated with Alzheimer's Disease: Selective Activation of mGlu2 Receptors Amplifies β-Amyloid Toxicity in Cultured Neurons, Whereas Dual Activation of mGlu2 and mGlu3 Receptors Is Neuroprotective. Molecular Pharmacology, 2011, 79, 618-626.	2.3	111
5	Dysfunction of TGF- \hat{l}^21 signaling in Alzheimer $\hat{a}\in^{TM}$ s disease: perspectives for neuroprotection. Cell and Tissue Research, 2012, 347, 291-301.	2.9	96
6	Different Expression of TNF- α Receptors and Prostaglandin E ₂ Production in Normal and Fibrotic Lung Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 2000, 22, 628-634.	2.9	89
7	\hat{l}^2 -Amyloid-Induced Synthesis of the Ganglioside Gd3 Is a Requisite for Cell Cycle Reactivation and Apoptosis in Neurons. Journal of Neuroscience, 2002, 22, 3963-3968.	3.6	89
8	Carnosine Prevents A \hat{I}^2 -Induced Oxidative Stress and Inflammation in Microglial Cells: A Key Role of TGF- \hat{I}^2 1. Cells, 2019, 8, 64.	4.1	87
9	Metabotropic Glutamate Receptors in Glial Cells: A New Potential Target for Neuroprotection?. Frontiers in Molecular Neuroscience, 2018, 11, 414.	2.9	79
10	DNA Polymerase-beta Is Expressed Early in Neurons of Alzheimer's Disease Brain and Is Loaded into DNA Replication Forks in Neurons Challenged with beta-Amyloid. Journal of Neuroscience, 2006, 26, 10949-10957.	3.6	76
11	Estrogen and Alzheimer's disease: Still an attractive topic despite disappointment from early clinical results. European Journal of Pharmacology, 2017, 817, 51-58.	3.5	74
12	Estrogen activates matrix metalloproteinases-2 and -9 to increase beta amyloid degradation. Molecular and Cellular Neurosciences, 2012, 49, 423-429.	2.2	68
13	Astrocytes contribute to Aβâ€induced blood–brain barrier damage through activation of endothelial <scp>MMP</scp> 9. Journal of Neurochemistry, 2017, 142, 464-477.	3.9	60
14	Differential Expression of Estrogen Receptors Alpha and Beta in the Spinal Cord during Postnatal Development: Localization in Glial Cells. Neuroendocrinology, 2003, 77, 334-340.	2.5	59
15	Erratic expression of DNA polymerases by βâ€amyloid causes neuronal death. FASEB Journal, 2002, 16, 2006-2008.	0.5	55
16	Astrocyte-Derived Paracrine Signals: Relevance for Neurogenic Niche Regulation and Blood–Brain Barrier Integrity. Frontiers in Pharmacology, 2019, 10, 1346.	3.5	55
17	$17\hat{l}^2$ -estradiol rescues spinal motoneurons from AMPA-induced toxicity: A role for glial cells. Neurobiology of Disease, 2005, 20, 461-470.	4.4	47
18	Differential involvement of estrogen receptor \hat{l}_{\pm} and estrogen receptor \hat{l}_{\pm} in the healing promoting effect of estrogen in human keratinocytes. Journal of Endocrinology, 2009, 200, 189-197.	2.6	45

#	Article	IF	Citations
19	Early compensatory responses against neuronal injury: A new therapeutic window of opportunity for Alzheimer's Disease?. CNS Neuroscience and Therapeutics, 2019, 25, 5-13.	3.9	43
20	Fluoxetine Prevents AÎ 2 1-42-Induced Toxicity via a Paracrine Signaling Mediated by Transforming-Growth-Factor-Î 2 1. Frontiers in Pharmacology, 2016, 7, 389.	3.5	42
21	Alzheimer's disease: brain expression of a metabolic disorder?. Trends in Endocrinology and Metabolism, 2010, 21, 537-544.	7.1	39
22	\hat{l}^2 -amyloid and Oxidative Stress: Perspectives in Drug Development. Current Pharmaceutical Design, 2020, 25, 4771-4781.	1.9	37
23	Normal Human Lung Fibroblasts Differently Modulate Interleukin-10 and Interleukin-12 Production by Monocytes. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 592-599.	2.9	36
24	Integrins mediate βâ€amyloidâ€induced cellâ€eycle activation and neuronal death. Journal of Neuroscience Research, 2008, 86, 350-355.	2.9	36
25	Effects of phenformin on the proliferation of human tumor cell lines. Life Sciences, 2003, 74, 643-650.	4.3	35
26	Polycystic Ovary Syndrome: Insights into the Therapeutic Approach with Inositols. Frontiers in Pharmacology, 2017, 8, 341.	3.5	35
27	Estrogen Receptors and Type 1 Metabotropic Glutamate Receptors Are Interdependent in Protecting Cortical Neurons against \hat{l}^2 -Amyloid Toxicity. Molecular Pharmacology, 2012, 81, 12-20.	2.3	31
28	Gene expression, proteome and calcium signaling alterations in immortalized hippocampal astrocytes from an Alzheimer's disease mouse model. Cell Death and Disease, 2019, 10, 24.	6.3	30
29	Nicergoline, a drug used for age-dependent cognitive impairment, protects cultured neurons against β-amyloid toxicity. Brain Research, 2005, 1047, 30-37.	2.2	29
30	Rescue of Noradrenergic System as a Novel Pharmacological Strategy in the Treatment of Chronic Pain: Focus on Microglia Activation. Frontiers in Pharmacology, 2019, 10, 1024.	3.5	28
31	\hat{l}^2 -Amyloid-Activated Cell Cycle in SH-SY5Y Neuroblastoma Cells: Correlation with the MAP Kinase Pathway. Journal of Molecular Neuroscience, 2004, 22, 231-236.	2.3	27
32	High mobility group box 1 contributes to wound healing induced by inhibition of dipeptidylpeptidase 4 in cultured keratinocytes. Frontiers in Pharmacology, 2015, 6, 126.	3.5	26
33	SIRT1 Mediates Melatonin's Effects on Microglial Activation in Hypoxia: In Vitro and In Vivo Evidence. Biomolecules, 2020, 10, 364.	4.0	24
34	Distinct effects of pramipexole on the proliferation of adult mouse sub-ventricular zone-derived cells and the appearance of a neuronal phenotype. Neuropharmacology, 2011, 60, 892-900.	4.1	23
35	Linagliptin: A thorough Characterization beyond Its Clinical Efficacy. Frontiers in Endocrinology, 2013, 4, 16.	3.5	22
36	Shedding of Microvesicles from Microglia Contributes to the Effects Induced by Metabotropic Glutamate Receptor 5 Activation on Neuronal Death. Frontiers in Pharmacology, 2017, 8, 812.	3.5	22

#	Article	IF	Citations
37	The contribution of microglia to early synaptic compensatory responses that precede \hat{l}^2 -amyloid-induced neuronal death. Scientific Reports, 2018, 8, 7297.	3.3	22
38	Enhanced expression of ERÎ \pm in astrocytes modifies the response of cortical neurons to \hat{l}^2 -amyloid toxicity. Neurobiology of Disease, 2009, 33, 415-421.	4.4	21
39	Identification of 5-Methoxyflavone as a Novel DNA Polymerase-Beta Inhibitor and Neuroprotective Agent against Beta-Amyloid Toxicity. Journal of Natural Products, 2015, 78, 2704-2711.	3.0	21
40	Protective effect of the sphingosine-1 phosphate receptor agonist siponimod on disrupted blood brain barrier function. Biochemical Pharmacology, 2021, 186, 114465.	4.4	20
41	Glial metabotropic glutamate receptor-4 increases maturation and survival of oligodendrocytes. Frontiers in Cellular Neuroscience, 2015, 8, 462.	3.7	18
42	Neuroprotective effects of nicergoline in immortalized neurons. European Journal of Pharmacology, 1999, 368, 285-290.	3.5	17
43	SIRT1-Dependent Upregulation of BDNF in Human Microglia Challenged with ${\rm A}^{\hat{1}2}$: An Early but Transient Response Rescued by Melatonin. Biomedicines, 2021, 9, 466.	3.2	16
44	The Ambiguous Role of Microglia in $\hat{Al^2}$ Toxicity: Chances for Therapeutic Intervention. Current Neuropharmacology, 2020, 18, 446-455.	2.9	16
45	Astrocytes Modify Migration of PBMCs Induced by \hat{l}^2 -Amyloid in a Blood-Brain Barrier in vitro Model. Frontiers in Cellular Neuroscience, 2019, 13, 337.	3.7	15
46	Reciprocal Interplay Between Astrocytes and CD4+ Cells Affects Blood-Brain Barrier and Neuronal Function in Response to \hat{l}^2 Amyloid. Frontiers in Molecular Neuroscience, 2020, 13, 120.	2.9	12
47	Early ?-Amyloid-induced Synaptic Dysfunction Is Counteracted by Estrogen in Organotypic Hippocampal Cultures. Current Alzheimer Research, 2016, 13, 631-640.	1.4	10
48	Dual Effect of $17\hat{l}^2$ -Estradiol on NMDA-Induced Neuronal Death: Involvement of Metabotropic Glutamate Receptor 1. Endocrinology, 2012, 153, 5940-5948.	2.8	9
49	Purinergic P2Y1 Receptors Control Rapid Expression of Plasma Membrane Processes in Hippocampal Astrocytes. Molecular Neurobiology, 2017, 54, 4081-4093.	4.0	7
50	Decreased Astrocytic CCL2 Accounts for BAF-312 Effect on PBMCs Transendothelial Migration Through a Blood Brain Barrier in Vitro Model. Journal of NeuroImmune Pharmacology, 2022, 17, 427-436.	4.1	7
51	A major role for astrocytes in the neuroprotective effect of estrogen. Drug Development Research, 2005, 66, 126-135.	2.9	6
52	Microglial polarization differentially affects neuronal vulnerability to the \hat{I}^2 -amyloid protein: Modulation by melatonin. Biochemical Pharmacology, 2022, 202, 115151.	4.4	4
53	Inverse correlation between the expression of AMPK/SIRT1 and NAMPT in psoriatic skin: A pilot study. Advances in Medical Sciences, 2022, 67, 262-268.	2.1	4
54	Sphingosine-1-phosphate and Sphingosine-1-phosphate receptors in the cardiovascular system: pharmacology and clinical implications. Advances in Pharmacology, 2022, , 95-139.	2.0	3