Andreas-David Brunner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3704487/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Molecular and Cellular Proteomics, 2018, 17, 2534-2545.	3.8	602
2	Pervasive functional translation of noncanonical human open reading frames. Science, 2020, 367, 1140-1146.	12.6	400
3	diaPASEF: parallel accumulation–serial fragmentation combined with data-independent acquisition. Nature Methods, 2020, 17, 1229-1236.	19.0	387
4	Ultraâ€high sensitivity mass spectrometry quantifies singleâ€cell proteome changes upon perturbation. Molecular Systems Biology, 2022, 18, e10798.	7.2	261
5	OpenCell: Endogenous tagging for the cartography of human cellular organization. Science, 2022, 375, eabi6983.	12.6	174
6	Deep Visual Proteomics defines single-cell identity and heterogeneity. Nature Biotechnology, 2022, 40, 1231-1240.	17.5	160
7	Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nature Communications, 2020, 11, 331.	12.8	138
8	Site-specific ubiquitylation and SUMOylation using genetic-code expansion and sortase. Nature Chemical Biology, 2019, 15, 276-284.	8.0	96
9	MaxQuant.Live Enables Global Targeting of More Than 25,000 Peptides. Molecular and Cellular Proteomics, 2019, 18, 982a-994.	3.8	91
10	Unbiased spatial proteomics with single-cell resolution in tissues. Molecular Cell, 2022, 82, 2335-2349.	9.7	85
11	Deep learning the collisional cross sections of the peptide universe from a million experimental values. Nature Communications, 2021, 12, 1185.	12.8	81
12	Multi-omics profiling of living human pancreatic islet donors reveals heterogeneous beta cell trajectories towards type 2 diabetes. Nature Metabolism, 2021, 3, 1017-1031.	11.9	76
13	The Swiss Primary Hypersomnolence and Narcolepsy Cohort study (SPHYNCS): Study protocol for a prospective, multicentre cohort observational study. Journal of Sleep Research, 2021, 30, e13296.	3.2	12
14	AlphaMap: an open-source Python package for the visual annotation of proteomics data with sequence-specific knowledge. Bioinformatics, 2022, 38, 849-852.	4.1	12
15	Reply to "Quality control requirements for the correct annotation of lipidomics dataâ€. Nature Communications, 2021, 12, 4772.	12.8	2