JoAnne Engebrecht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3704470/publications.pdf

Version: 2024-02-01

147801 155660 5,800 58 31 55 citations g-index h-index papers 62 62 62 3723 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	DNA repair, recombination, and damage signaling. Genetics, 2022, 220, .	2.9	26
2	Inducible degradation of dosage compensation protein DPY-27 facilitates isolation of <i>Caenorhabditis elegans </i> males for molecular and biochemical analyses. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	6
3	BRCA1 and BRCA2 Tumor Suppressor Function in Meiosis. Frontiers in Cell and Developmental Biology, 2021, 9, 668309.	3.7	18
4	Meiotic Double-Strand Break Processing and Crossover Patterning Are Regulated in a Sex-Specific Manner by BRCA1–BARD1 in ⟨i⟩CaenorhabditisÂelegans⟨/i⟩. Genetics, 2020, 216, 359-379.	2.9	18
5	A toolbox of $\lg G$ subclass-switched recombinant monoclonal antibodies for enhanced multiplex immunolabeling of brain. ELife, 2019, 8, .	6.0	27
6	The tumor suppressor BRCA1-BARD1 complex localizes to the synaptonemal complex and regulates recombination under meiotic dysfunction in Caenorhabditis elegans. PLoS Genetics, 2018, 14, e1007701.	3.5	44
7	LINC complexes promote homologous recombination in part through inhibition of nonhomologous end joining. Journal of Cell Biology, 2016, 215, 801-821.	5.2	48
8	To Break or Not To Break: Sex Chromosome Hemizygosity During Meiosis in Caenorhabditis. Genetics, 2016, 204, 999-1013.	2.9	6
9	Plasticity in the Meiotic Epigenetic Landscape of Sex Chromosomes in <i>Caenorhabditis</i> Species. Genetics, 2016, 203, 1641-1658.	2.9	11
10	DNA Damage Response and Spindle Assembly Checkpoint Function throughout the Cell Cycle to Ensure Genomic Integrity. PLoS Genetics, 2015, 11, e1005150.	3.5	49
11	The spindle assembly checkpoint: More than just keeping track of the spindle. Trends in Cell & Molecular Biology, 2015, 10, 141-150.	0.5	7
12	Pseudosynapsis and Decreased Stringency of Meiotic Repair Pathway Choice on the Hemizygous Sex Chromosome of <i>Caenorhabditis elegans</i> Males. Genetics, 2014, 197, 543-560.	2.9	39
13	Slowing Replication in Preparation for Reduction. PLoS Genetics, 2012, 8, e1002715.	3.5	1
14	Heteromorphic sex chromosomes: Navigating meiosis without a homologous partner. Molecular Reproduction and Development, 2011, 78, 623-632.	2.0	15
15	Caenorhabditis elegans Histone Methyltransferase MET-2 Shields the Male X Chromosome from Checkpoint Machinery and Mediates Meiotic Sex Chromosome Inactivation. PLoS Genetics, 2011, 7, e1002267.	3.5	32
16	Meiotic Errors Activate Checkpoints that Improve Gamete Quality without Triggering Apoptosis in Male Germ Cells. Current Biology, 2010, 20, 2078-2089.	3.9	68
17	A Single Unpaired and Transcriptionally Silenced X Chromosome Locally Precludes Checkpoint Signaling in the <i>Caenorhabditis elegans </i>	2.9	38
18	Phosphatidylinositol-4,5-Bisphosphate and Phospholipase D-Generated Phosphatidic Acid Specify SNARE-Mediated Vesicle Fusion for Prospore Membrane Formation. Eukaryotic Cell, 2009, 8, 1094-1105.	3.4	16

#	Article	IF	Citations
19	Phospholipase D function in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 970-974.	2.4	19
20	Sorting Signals within the <i>Saccharomyces cerevisiae</i> Sporulation-Specific Dityrosine Transporter, Dtr1p, C Terminus Promote Golgi-to-Prospore Membrane Transport. Eukaryotic Cell, 2008, 7, 1674-1684.	3.4	8
21	SYP-3 Restricts Synaptonemal Complex Assembly to Bridge Paired Chromosome Axes During Meiosis in Caenorhabditis elegans. Genetics, 2007, 176, 2015-2025.	2.9	105
22	Differential timing of S phases, X chromosome replication, and meiotic prophase in the C. elegans germ line. Developmental Biology, 2007, 308, 206-221.	2.0	196
23	Snc1p vâ€SNARE Transport to the Prospore Membrane During Yeast Sporulation is Dependent on Endosomal Retrieval Pathways. Traffic, 2007, 8, 1231-1245.	2.7	19
24	The Arf-GTPase-Activating Protein Gcs1p Is Essential for Sporulation and Regulates the Phospholipase D Spo14p. Eukaryotic Cell, 2006, 5, 112-124.	3.4	18
25	Phospholipase D and the SNARE Sso1p are necessary for vesicle fusion during sporulation in yeast. Journal of Cell Science, 2006, 119, 1406-1415.	2.0	110
26	End3p-Mediated Endocytosis Is Required for Spore Wall Formation in Saccharomyces cerevisiae. Genetics, 2005, 170, 1561-1574.	2.9	22
27	Saccharomyces cerevisiae Sps1p Regulates Trafficking of Enzymes Required for Spore Wall Synthesis. Eukaryotic Cell, 2005, 4, 536-544.	3.4	31
28	Roles of Phosphoinositides and of Spo14p (phospholipase D)-generated Phosphatidic Acid during Yeast Sporulation. Molecular Biology of the Cell, 2004, 15, 207-218.	2.1	63
29	Cell signaling in yeast sporulation. Biochemical and Biophysical Research Communications, 2003, 306, 325-328.	2.1	19
30	Dual role for phosphoinositides in regulation of yeast and mammalian phospholipase D enzymes. Journal of Cell Biology, 2002, 159, 1039-1049.	5.2	93
31	Differential Regulation of <i>Saccharomyces cerevisiae</i> Phospholipase D in Sporulation and Sec14-Independent Secretion. Genetics, 2002, 160, 1353-1361.	2.9	29
32	The Saccharomyces cerevisiae MUM2 Gene Interacts With the DNA Replication Machinery and Is Required for Meiotic Levels of Double Strand Breaks. Genetics, 2001, 157, 1179-1189.	2.9	36
33	<i>SPO14</i> Separation-of-Function Mutations Define Unique Roles for Phospholipase D in Secretion and Cellular Differentiation in <i>Saccharomyces cerevisiae</i> Genetics, 2001, 158, 1431-1444.	2.9	35
34	Regulation and function of PLDs in yeast. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1439, 167-174.	2.4	44
35	Identification of a phosphoinositide binding motif that mediates activation of mammalian and yeast phospholipase D isoenzymes. EMBO Journal, 1999, 18, 5911-5921.	7.8	158
36	ADP-Ribosylation Factors Do Not Activate Yeast Phospholipase Ds but Are Required for Sporulation. Molecular Biology of the Cell, 1998, 9, 2025-2036.	2.1	55

#	Article	IF	Citations
37	Relocalization of Phospholipase D Activity Mediates Membrane Formation During Meiosis. Journal of Cell Biology, 1998, 140, 81-90.	5.2	151
38	Yeast dom34 Mutants Are Defective in Multiple Developmental Pathways and Exhibit Decreased Levels of Polyribosomes. Genetics, 1998, 149, 45-56.	2.9	59
39	Yeast Meiotic Mutants Proficient for the Induction of Ectopic Recombination. Genetics, 1998, 148, 581-598.	2.9	27
40	Chapter 12 Genetic and Morphological Approaches for the Analysis of Meiotic Chromosomes in Yeast. Methods in Cell Biology, 1997, 53, 257-285.	1.1	68
41	Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. EMBO Journal, 1997, 16, 4519-4530.	7.8	341
42	Measurement of Phospholipase D Activity. Analytical Biochemistry, 1997, 252, 1-9.	2.4	189
43	Structure and regulation of phospholipase D. Trends in Pharmacological Sciences, 1996, 17, 182-185.	8.7	180
44	Phospholipase D signaling is essential for meiosis Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 12151-12155.	7.1	208
45	Human ADP-ribosylation Factor-activated Phosphatidylcholine-specific Phospholipase D Defines a New and Highly Conserved Gene Family. Journal of Biological Chemistry, 1995, 270, 29640-29643.	3.4	614
46	ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell, 1993, 72, 365-378.	28.9	625
47	Meiosis-specific RNA splicing in yeast. Cell, 1991, 66, 1257-1268.	28.9	212
48	Minipreps of Plasmid DNA. Current Protocols in Molecular Biology, 1991, 15, Unit1.6.	2.9	37
49	MER1, a yeast gene required for chromosome pairing and genetic recombination, is induced in meiosis Molecular and Cellular Biology, 1990, 10, 2379-2389.	2.3	149
50	Meiotic gene conversion and crossing over: Their relationship to each other and to chromosome synapsis and segregation. Cell, 1990, 62, 927-937.	28.9	209
51	Regulation of Luminescence in Marine Bacteria. , 1989, , 71-86.		12
52	Regulation of Luminescence in Marine Bacteria. , 1989, , 71-86.		5
53	Nucleotide sequence of the regulatory locus controlling expression of bacterial genes for bioluminescence. Nucleic Acids Research, 1987, 15, 10455-10467.	14.5	146
54	[8] Techniques for cloning and analyzing bioluminescence genes from marine bacteria. Methods in Enzymology, 1986, , 83-98.	1.0	4

#	Article	IF	CITATIONS
55	Regulation of Expression of Bacterial Genes for Bioluminescence. , 1986, , 31-44.		31
56	Measuring gene expression with light. Science, 1985, 227, 1345-1347.	12.6	157
57	Evidence for plasmid-encoded manganese oxidation in a marine pseudomonad. FEMS Microbiology Letters, 1983, 19, 1-6.	1.8	10
58	Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri. Cell, 1983, 32, 773-781.	28.9	835