JoAnne Engebrecht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3704470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri. Cell, 1983, 32, 773-781.	28.9	835
2	ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell, 1993, 72, 365-378.	28.9	625
3	Human ADP-ribosylation Factor-activated Phosphatidylcholine-specific Phospholipase D Defines a New and Highly Conserved Gene Family. Journal of Biological Chemistry, 1995, 270, 29640-29643.	3.4	614
4	Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. EMBO Journal, 1997, 16, 4519-4530.	7.8	341
5	Meiosis-specific RNA splicing in yeast. Cell, 1991, 66, 1257-1268.	28.9	212
6	Meiotic gene conversion and crossing over: Their relationship to each other and to chromosome synapsis and segregation. Cell, 1990, 62, 927-937.	28.9	209
7	Phospholipase D signaling is essential for meiosis Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 12151-12155.	7.1	208
8	Differential timing of S phases, X chromosome replication, and meiotic prophase in the C. elegans germ line. Developmental Biology, 2007, 308, 206-221.	2.0	196
9	Measurement of Phospholipase D Activity. Analytical Biochemistry, 1997, 252, 1-9.	2.4	189
10	Structure and regulation of phospholipase D. Trends in Pharmacological Sciences, 1996, 17, 182-185.	8.7	180
11	ldentification of a phosphoinositide binding motif that mediates activation of mammalian and yeast phospholipase D isoenzymes. EMBO Journal, 1999, 18, 5911-5921.	7.8	158
12	Measuring gene expression with light. Science, 1985, 227, 1345-1347.	12.6	157
13	Relocalization of Phospholipase D Activity Mediates Membrane Formation During Meiosis. Journal of Cell Biology, 1998, 140, 81-90.	5.2	151
14	MER1, a yeast gene required for chromosome pairing and genetic recombination, is induced in meiosis Molecular and Cellular Biology, 1990, 10, 2379-2389.	2.3	149
15	Nucleotide sequence of the regulatory locus controlling expression of bacterial genes for bioluminescence. Nucleic Acids Research, 1987, 15, 10455-10467.	14.5	146
16	Phospholipase D and the SNARE Sso1p are necessary for vesicle fusion during sporulation in yeast. Journal of Cell Science, 2006, 119, 1406-1415.	2.0	110
17	SYP-3 Restricts Synaptonemal Complex Assembly to Bridge Paired Chromosome Axes During Meiosis in Caenorhabditis elegans. Genetics, 2007, 176, 2015-2025.	2.9	105
18	Dual role for phosphoinositides in regulation of yeast and mammalian phospholipase D enzymes. Journal of Cell Biology, 2002, 159, 1039-1049.	5.2	93

JOANNE ENGEBRECHT

#	Article	IF	CITATIONS
19	Chapter 12 Genetic and Morphological Approaches for the Analysis of Meiotic Chromosomes in Yeast. Methods in Cell Biology, 1997, 53, 257-285.	1.1	68
20	Meiotic Errors Activate Checkpoints that Improve Gamete Quality without Triggering Apoptosis in Male Germ Cells. Current Biology, 2010, 20, 2078-2089.	3.9	68
21	Roles of Phosphoinositides and of Spo14p (phospholipase D)-generated Phosphatidic Acid during Yeast Sporulation. Molecular Biology of the Cell, 2004, 15, 207-218.	2.1	63
22	Yeast dom34 Mutants Are Defective in Multiple Developmental Pathways and Exhibit Decreased Levels of Polyribosomes. Genetics, 1998, 149, 45-56.	2.9	59
23	ADP-Ribosylation Factors Do Not Activate Yeast Phospholipase Ds but Are Required for Sporulation. Molecular Biology of the Cell, 1998, 9, 2025-2036.	2.1	55
24	DNA Damage Response and Spindle Assembly Checkpoint Function throughout the Cell Cycle to Ensure Genomic Integrity. PLoS Genetics, 2015, 11, e1005150.	3.5	49
25	LINC complexes promote homologous recombination in part through inhibition of nonhomologous end joining. Journal of Cell Biology, 2016, 215, 801-821.	5.2	48
26	Regulation and function of PLDs in yeast. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1439, 167-174.	2.4	44
27	The tumor suppressor BRCA1-BARD1 complex localizes to the synaptonemal complex and regulates recombination under meiotic dysfunction in Caenorhabditis elegans. PLoS Genetics, 2018, 14, e1007701.	3.5	44
28	Pseudosynapsis and Decreased Stringency of Meiotic Repair Pathway Choice on the Hemizygous Sex Chromosome of <i>Caenorhabditis elegans</i> Males. Genetics, 2014, 197, 543-560.	2.9	39
29	A Single Unpaired and Transcriptionally Silenced X Chromosome Locally Precludes Checkpoint Signaling in the <i>Caenorhabditis elegans</i> Germ Line. Genetics, 2010, 184, 613-628.	2.9	38
30	Minipreps of Plasmid DNA. Current Protocols in Molecular Biology, 1991, 15, Unit1.6.	2.9	37
31	The Saccharomyces cerevisiae MUM2 Gene Interacts With the DNA Replication Machinery and Is Required for Meiotic Levels of Double Strand Breaks. Genetics, 2001, 157, 1179-1189.	2.9	36
32	<i>SPO14</i> Separation-of-Function Mutations Define Unique Roles for Phospholipase D in Secretion and Cellular Differentiation in <i>Saccharomyces cerevisiae</i> . Genetics, 2001, 158, 1431-1444.	2.9	35
33	Caenorhabditis elegans Histone Methyltransferase MET-2 Shields the Male X Chromosome from Checkpoint Machinery and Mediates Meiotic Sex Chromosome Inactivation. PLoS Genetics, 2011, 7, e1002267.	3.5	32
34	Saccharomyces cerevisiae Sps1p Regulates Trafficking of Enzymes Required for Spore Wall Synthesis. Eukaryotic Cell, 2005, 4, 536-544.	3.4	31
35	Regulation of Expression of Bacterial Genes for Bioluminescence. , 1986, , 31-44.		31
36	Differential Regulation of <i>Saccharomyces cerevisiae</i> Phospholipase D in Sporulation and Sec14-Independent Secretion. Genetics, 2002, 160, 1353-1361.	2.9	29

JOANNE ENGEBRECHT

#	Article	IF	CITATIONS
37	A toolbox of IgG subclass-switched recombinant monoclonal antibodies for enhanced multiplex immunolabeling of brain. ELife, 2019, 8, .	6.0	27
38	Yeast Meiotic Mutants Proficient for the Induction of Ectopic Recombination. Genetics, 1998, 148, 581-598.	2.9	27
39	DNA repair, recombination, and damage signaling. Genetics, 2022, 220, .	2.9	26
40	End3p-Mediated Endocytosis Is Required for Spore Wall Formation in Saccharomyces cerevisiae. Genetics, 2005, 170, 1561-1574.	2.9	22
41	Cell signaling in yeast sporulation. Biochemical and Biophysical Research Communications, 2003, 306, 325-328.	2.1	19
42	Snc1p v‣NARE Transport to the Prospore Membrane During Yeast Sporulation is Dependent on Endosomal Retrieval Pathways. Traffic, 2007, 8, 1231-1245.	2.7	19
43	Phospholipase D function in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 970-974.	2.4	19
44	The Arf-GTPase-Activating Protein Gcs1p Is Essential for Sporulation and Regulates the Phospholipase D Spo14p. Eukaryotic Cell, 2006, 5, 112-124.	3.4	18
45	Meiotic Double-Strand Break Processing and Crossover Patterning Are Regulated in a Sex-Specific Manner by BRCA1–BARD1 in <i>CaenorhabditisÂelegans</i> . Genetics, 2020, 216, 359-379.	2.9	18
46	BRCA1 and BRCA2 Tumor Suppressor Function in Meiosis. Frontiers in Cell and Developmental Biology, 2021, 9, 668309.	3.7	18
47	Phosphatidylinositol-4,5-Bisphosphate and Phospholipase D-Generated Phosphatidic Acid Specify SNARE-Mediated Vesicle Fusion for Prospore Membrane Formation. Eukaryotic Cell, 2009, 8, 1094-1105.	3.4	16
48	Heteromorphic sex chromosomes: Navigating meiosis without a homologous partner. Molecular Reproduction and Development, 2011, 78, 623-632.	2.0	15
49	Regulation of Luminescence in Marine Bacteria. , 1989, , 71-86.		12
50	Plasticity in the Meiotic Epigenetic Landscape of Sex Chromosomes in <i>Caenorhabditis</i> Species. Genetics, 2016, 203, 1641-1658.	2.9	11
51	Evidence for plasmid-encoded manganese oxidation in a marine pseudomonad. FEMS Microbiology Letters, 1983, 19, 1-6.	1.8	10
52	Sorting Signals within the <i>Saccharomyces cerevisiae</i> Sporulation-Specific Dityrosine Transporter, Dtr1p, C Terminus Promote Golgi-to-Prospore Membrane Transport. Eukaryotic Cell, 2008, 7, 1674-1684.	3.4	8
53	The spindle assembly checkpoint: More than just keeping track of the spindle. Trends in Cell & Molecular Biology, 2015, 10, 141-150.	0.5	7
54	To Break or Not To Break: Sex Chromosome Hemizygosity During Meiosis in Caenorhabditis. Genetics, 2016, 204, 999-1013.	2.9	6

#	Article	IF	CITATIONS
55	Inducible degradation of dosage compensation protein DPY-27 facilitates isolation of <i>Caenorhabditis elegans</i> males for molecular and biochemical analyses. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	6
56	Regulation of Luminescence in Marine Bacteria. , 1989, , 71-86.		5
57	[8] Techniques for cloning and analyzing bioluminescence genes from marine bacteria. Methods in Enzymology, 1986, , 83-98.	1.0	4
58	Slowing Replication in Preparation for Reduction. PLoS Genetics, 2012, 8, e1002715.	3.5	1