
Suttichai Assabumrungrat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3703968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic dry reforming of methane over high surface area ceria. Applied Catalysis B: Environmental, 2005, 60, 107-116.	20.2	280
2	Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation. Applied Catalysis B: Environmental, 2015, 176-177, 532-541.	20.2	270
3	Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: The possible use of these fuels in internal reforming SOFC. Journal of Power Sources, 2007, 163, 943-951.	7.8	245
4	Synthesis gas production from dry reforming of methane over CeO2 doped Ni/Al2O3: Influence of the doping ceria on the resistance toward carbon formation. Chemical Engineering Journal, 2005, 112, 13-22.	12.7	220
5	Methane steam reforming over Ni/Ce–ZrO2 catalyst: Influences of Ce–ZrO2 support on reactivity, resistance toward carbon formation, and intrinsic reaction kinetics. Applied Catalysis A: General, 2005, 290, 200-211.	4.3	214
6	Roles of monometallic catalysts in hydrodeoxygenation of palm oil to green diesel. Chemical Engineering Journal, 2015, 278, 249-258.	12.7	180
7	Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst. Bioresource Technology, 2014, 158, 81-90.	9.6	156
8	Catalytic steam reforming of ethanol over high surface area CeO2: The role of CeO2 as an internal pre-reforming catalyst. Applied Catalysis B: Environmental, 2006, 66, 29-39.	20.2	146
9	Diesel-like hydrocarbon production from hydroprocessing of relevant refining palm oil. Fuel Processing Technology, 2013, 116, 16-26.	7.2	113
10	Catalytic steam reforming of ethane and propane over CeO2-doped Ni/Al2O3 at SOFC temperature: Improvement of resistance toward carbon formation by the redox property of doping CeO2. Fuel, 2006, 85, 323-332.	6.4	103
11	Techno-economic evaluation of different CO2-based processes for dimethyl carbonate production. Chemical Engineering Research and Design, 2015, 93, 496-510.	5.6	102
12	Hydrogen Production via Sorption Enhanced Steam Methane Reforming Process Using Ni/CaO Multifunctional Catalyst. Industrial & Engineering Chemistry Research, 2011, 50, 13662-13671.	3.7	98
13	Catalytic behaviors of Ni/γ-Al ₂ O ₃ and Co/γ-Al ₂ O ₃ during the hydrodeoxygenation of palm oil. Catalysis Science and Technology, 2015, 5, 3693-3705.	4.1	96
14	Biodiesel production in a novel continuous flow microwave reactor. Renewable Energy, 2015, 83, 25-29.	8.9	95
15	Hydrogen production from steam and autothermal reforming of LPG over high surface area ceria. Journal of Power Sources, 2006, 158, 1348-1357.	7.8	94
16	Reviews on Solid Oxide Fuel Cell Technology. Engineering Journal, 2009, 13, 65-84.	1.0	92
17	Ordered mesoporous Ni/La2O3 catalysts with interfacial synergism towards CO2 activation in dry reforming of methane. Applied Catalysis B: Environmental, 2019, 259, 118092.	20.2	89
18	Oil extracted from spent coffee grounds for bio-hydrotreated diesel production. Energy Conversion and Management, 2016, 126, 1028-1036.	9.2	88

#	Article	IF	CITATIONS
19	Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production. Applied Energy, 2014, 114, 10-17.	10.1	83
20	Effect of high surface area CeO2 and Ce-ZrO2 supports over Ni catalyst on CH4 reforming with H2O in the presence of O2, H2, and CO2. Chemical Engineering Journal, 2008, 138, 264-273.	12.7	80
21	Glycerol ethers synthesis from glycerol etherification with tert-butyl alcohol in reactive distillation. Computers and Chemical Engineering, 2011, 35, 2034-2043.	3.8	80
22	Effects of humidity, O2, and CO2 on H2S adsorption onto upgraded and KOH impregnated activated carbons. Fuel Processing Technology, 2014, 124, 249-257.	7.2	79
23	Process design of continuous biodiesel production by reactive distillation: Comparison between homogeneous and heterogeneous catalysts. Chemical Engineering and Processing: Process Intensification, 2015, 92, 33-44.	3.6	78
24	Thermodynamic study of hydrogen production from crude glycerol autothermal reforming for fuel cell applications. International Journal of Hydrogen Energy, 2010, 35, 6617-6623.	7.1	76
25	Exergoeconomics of hydrogen production from biomass air-steam gasification with methane co-feeding. Energy Conversion and Management, 2017, 140, 228-239.	9.2	74
26	A modeling study on the effects of membrane characteristics and operating parameters on physical absorption of CO2 by hollow fiber membrane contactor. Journal of Membrane Science, 2011, 380, 21-33.	8.2	72
27	Simultaneous absorption of CO2 and H2S from biogas by capillary membrane contactor. Journal of Membrane Science, 2012, 392-393, 38-47.	8.2	70
28	Green Pathway in Utilizing CO2 via Cycloaddition Reaction with Epoxide—A Mini Review. Processes, 2020, 8, 548.	2.8	68
29	Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals. Waste Management, 2021, 127, 101-111.	7.4	66
30	Steam reforming of ethanol with co-fed oxygen and hydrogen over Ni on high surface area ceria support. Applied Catalysis A: General, 2007, 327, 180-188.	4.3	64
31	Selection of appropriate fuel processor for biogas-fuelled SOFC system. Chemical Engineering Journal, 2008, 140, 341-351.	12.7	64
32	Comparison of carbon formation boundary in different modes of solid oxide fuel cells fueled by methane. Journal of Power Sources, 2005, 142, 75-80.	7.8	63
33	Biodiesel production from palm oil using combined mechanical stirred and ultrasonic reactor. Ultrasonics Sonochemistry, 2014, 21, 1585-1591.	8.2	63
34	Nickel sulfide, nickel phosphide and nickel carbide catalysts for bio-hydrotreated fuel production. Energy Conversion and Management, 2017, 151, 324-333.	9.2	63
35	Catalytic performance of Ni catalysts supported on CeO2 with different morphologies for low-temperature CO2 methanation. Catalysis Today, 2021, 375, 234-244.	4.4	62
36	Metals (Mg, Sr and Al) modified CaO based sorbent for CO 2 sorption/desorption stability in fixed bed reactor for high temperature application. Chemical Engineering Journal, 2016, 284, 1212-1223.	12.7	60

#	Article	IF	CITATIONS
37	Theoretical study on the synthesis of methyl acetate from methanol and acetic acid in pervaporation membrane reactors: effect of continuous-flow modes. Chemical Engineering Journal, 2003, 95, 57-65.	12.7	57
38	The effect of specific surface area on the activity of nano-scale ceria catalysts for methanol decomposition with and without steam at SOFC operating temperatures. Chemical Engineering Science, 2006, 61, 2540-2549.	3.8	57
39	Mathematical modeling and cascade design of hollow fiber membrane contactor for CO2 absorption by monoethanolamine. Journal of Membrane Science, 2012, 401-402, 175-189.	8.2	57
40	Determination of the boundary of carbon formation for dry reforming of methane in a solid oxide fuel cell. Journal of Power Sources, 2006, 159, 1274-1282.	7.8	55
41	H2 production from sorption enhanced steam reforming of biogas using multifunctional catalysts of Ni over Zr-, Ce- and La-modified CaO sorbents. Chemical Engineering Journal, 2017, 313, 1415-1425.	12.7	53
42	Comparative study of oxidative coupling of methane modeling in various types of reactor. Chemical Engineering Journal, 2005, 115, 63-71.	12.7	52
43	Techno-economic analysis of vanillin production from Kraft lignin: Feasibility study of lignin valorization. Bioresource Technology, 2020, 299, 122559.	9.6	52
44	Role and advantages of H2S in catalytic steam reforming over nanoscale CeO2-based catalysts. Journal of Catalysis, 2010, 276, 6-15.	6.2	51
45	Synthesis of methyl esters from relevant palm products in near-critical methanol with modified-zirconia catalysts. Bioresource Technology, 2010, 101, 8416-8423.	9.6	51
46	Hydrogen production from catalytic supercritical water reforming of glycerol with cobalt-based catalysts. International Journal of Hydrogen Energy, 2013, 38, 4368-4379.	7.1	51
47	Performance evaluation of sorption enhanced chemical-looping reforming for hydrogen production from biomass with modification of catalyst and sorbent regeneration. Chemical Engineering Journal, 2016, 303, 338-347.	12.7	50
48	Thermodynamic analysis of carbon formation in a solid oxide fuel cell with a direct internal reformer fuelled by methanol. Journal of Power Sources, 2005, 139, 55-60.	7.8	48
49	Role of ultrasonic irradiation on transesterification of palm oil using calcium oxide as a solid base catalyst. Energy Conversion and Management, 2016, 120, 62-70.	9.2	48
50	Integration of the biorefinery concept for the development of sustainable processes for pulp and paper industry. Computers and Chemical Engineering, 2018, 119, 70-84.	3.8	48
51	Thermodynamic analysis for a solid oxide fuel cell with direct internal reforming fueled by ethanol. Chemical Engineering Science, 2004, 59, 6015-6020.	3.8	47
52	Hydrogen production via chemical looping steam reforming of ethanol by Ni-based oxygen carriers supported on CeO2 and La2O3 promoted Al2O3. International Journal of Hydrogen Energy, 2020, 45, 1477-1491.	7.1	46
53	Analysis of a proton-conducting SOFC with direct internal reforming. Chemical Engineering Science, 2010, 65, 581-589.	3.8	45
54	Development of Ni–Fe bimetallic based catalysts for biomass tar cracking/reforming: Effects of catalyst support and co-fed reactants on tar conversion characteristics. Fuel Processing Technology, 2014, 127, 26-32.	7.2	44

#	Article	IF	CITATIONS
55	Hydrogen-free hydrogenation of furfural to furfuryl alcohol and 2-methylfuran over Ni and Co-promoted Cu/γ-Al2O3 catalysts. Fuel Processing Technology, 2021, 214, 106721.	7.2	43
56	Performance of ethanol-fuelled solid oxide fuel cells: Proton and oxygen ion conductors. Chemical Engineering Journal, 2007, 133, 187-194.	12.7	42
57	Hydrogen production from glycerol steam reforming for low- and high-temperature PEMFCs. International Journal of Hydrogen Energy, 2011, 36, 267-275.	7.1	42
58	Performance analysis of an integrated biomass gasification and PEMFC (proton exchange membrane) Tj ETQq0 0	0 rgBT /O	verlock 10 T [.] 42
59	Activity and stability performance of multifunctional catalyst (Ni/CaO and Ni/Ca12Al14O33CaO) for bio-hydrogen production from sorption enhanced biogas steam reforming. International Journal of Hydrogen Energy, 2016, 41, 7318-7331.	7.1	42
60	Process and cost modeling of lactic acid recovery from fermentation broths by membrane-based process. Process Biochemistry, 2018, 68, 205-213.	3.7	41
61	Analysis of planar solid oxide fuel cells based on proton-conducting electrolyte. Solid State Ionics, 2010, 181, 1568-1576.	2.7	40
62	Conversion of poisonous methanethiol to hydrogen-rich gas by chemisorption/reforming over nano-scale CeO2: The use of CeO2 as catalyst coating material. Applied Catalysis B: Environmental, 2011, 102, 267-275.	20.2	40
63	Process design of biodiesel production: Hybridization of ester-and transesterification in a single reactive distillation. Energy Conversion and Management, 2017, 153, 493-503.	9.2	40
64	Application of heterogeneous catalysts for transesterification of refined palm oil in ultrasound-assisted reactor. Fuel Processing Technology, 2013, 111, 22-28.	7.2	39
65	The effect of direction of hydrogen permeation on the rate through a composite palladium membrane. Journal of Membrane Science, 2000, 175, 19-24.	8.2	38
66	Integrated flow reactor that combines high-shear mixing and microwave irradiation for biodiesel production. Biomass and Bioenergy, 2015, 77, 186-191.	5.7	38
67	Investigation of isosynthesis via CO hydrogenation over ZrO2 and CeO2 catalysts: Effects of crystallite size, phase composition and acid–base sites. Catalysis Communications, 2007, 8, 548-556.	3.3	37
68	Performance of an anode-supported solid oxide fuel cell with direct-internal reforming of ethanol. International Journal of Hydrogen Energy, 2009, 34, 7780-7788.	7.1	37
69	Epoxidation of methyl oleate in a TiO2 coated-wall capillary microreactor. Chemical Engineering Journal, 2017, 314, 594-599.	12.7	37
70	Cleaner gasoline production by using glycerol as fuel extender. Fuel Processing Technology, 2010, 91, 456-460.	7.2	36
71	Effect of membrane module arrangement of gas–liquid membrane contacting process on CO2 absorption performance: A modeling study. Journal of Membrane Science, 2011, 372, 75-86.	8.2	36
72	Catalytic reforming of glycerol in supercritical water with nickel-based catalysts. International Journal of Hydrogen Energy, 2014, 39, 14739-14750.	7.1	36

#	Article	IF	CITATIONS
73	Modeling of SOFC with indirect internal reforming operation: Comparison of conventional packed-bed and catalytic coated-wall internal reformer. International Journal of Hydrogen Energy, 2009, 34, 410-421.	7.1	35
74	Effect of oxygen addition on catalytic performance of Ni/SiO2·MgO toward carbon dioxide reforming of methane under periodic operation. International Journal of Hydrogen Energy, 2009, 34, 6211-6220.	7.1	35
75	Comparative Study of Hydrogen Sulfide Adsorption by using Alkaline Impregnated Activated Carbons for Hot Fuel Gas Purification. Energy Procedia, 2011, 9, 15-24.	1.8	35
76	Reactive distillation for biodiesel production from soybean oil. Korean Journal of Chemical Engineering, 2011, 28, 649-655.	2.7	35
77	Using glycerol for hydrogen production via sorption-enhanced chemical looping reforming: Thermodynamic analysis. Energy Conversion and Management, 2016, 124, 325-332.	9.2	35
78	Synthetic CaO-based sorbent for high-temperature CO2 capture in sorption-enhanced hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 20663-20677.	7.1	35
79	Simulation of pervaporation membrane reactors for liquid phase synthesis of ethyl tert-butyl ether from tert-butyl alcohol and ethanol. Catalysis Today, 2003, 79-80, 249-257.	4.4	34
80	Catalytic steam reforming of dimethyl ether (DME) over high surface area Ce–ZrO2 at SOFC temperature: The possible use of DME in indirect internal reforming operation (IIR-SOFC). Applied Catalysis A: General, 2007, 320, 105-113.	4.3	34
81	Simulation and thermodynamic analysis of chemical looping reforming and CO2 enhanced chemical looping reforming. Chemical Engineering Research and Design, 2014, 92, 2575-2583.	5.6	34
82	Modeling of IT-SOFC with indirect internal reforming operation fueled by methane: Effect of oxygen adding as autothermal reforming. International Journal of Hydrogen Energy, 2010, 35, 13271-13279.	7.1	33
83	Rate based modeling for CO2 absorption using monoethanolamine solution in a hollow fiber membrane contactor. Journal of Membrane Science, 2013, 429, 396-408.	8.2	33
84	Theoretical performance analysis of ethanol-fuelled solid oxide fuel cells with different electrolytes. Chemical Engineering Journal, 2006, 119, 11-18.	12.7	32
85	Design of ceramic paste formulations for co-extrusion. Powder Technology, 2013, 245, 21-27.	4.2	32
86	Analysis of a pressurized solid oxide fuel cell–gas turbine hybrid power system with cathode gas recirculation. International Journal of Hydrogen Energy, 2013, 38, 4748-4759.	7.1	32
87	Theoretical analysis of a glycerol reforming and high-temperature PEMFC integrated system: Hydrogen production and system efficiency. Fuel, 2013, 105, 345-352.	6.4	32
88	Kinetics of liquid phase synthesis of ethyltert-butyl ether fromtert-butyl alcohol and ethanol catalyzed by ?-zeolite supported on monolith. International Journal of Chemical Kinetics, 2002, 34, 292-299.	1.6	31
89	Performance evaluation of combined solid oxide fuel cells with different electrolytes. International Journal of Hydrogen Energy, 2010, 35, 4301-4310.	7.1	31
90	Graphene Oxide and Microwave Synergism for Efficient Esterification of Fatty Acids. Energy & Fuels, 2018, 32, 3599-3607.	5.1	31

#	Article	IF	CITATIONS
91	Performance comparison of different cavitation reactors for biodiesel production via transesterification of palm oil. Journal of Cleaner Production, 2018, 205, 1094-1101.	9.3	31
92	Promotional role of MgO on sorptionâ€enhanced steam reforming of ethanol over Ni/CaO catalysts. AICHE Journal, 2020, 66, e16877.	3.6	31
93	Simulation of a Palladium Membrane Reactor for Dehydrogenation of Ethylbenzene Journal of Chemical Engineering of Japan, 2002, 35, 263-273.	0.6	30
94	Effect of calcination temperature on characteristics of sulfated zirconia and its application as catalyst for isosynthesis. Fuel Processing Technology, 2010, 91, 121-126.	7.2	30
95	Ternary metal oxide catalysts for selective oxidation of benzene to phenol. Journal of Industrial and Engineering Chemistry, 2008, 14, 596-601.	5.8	29
96	Neural network hybrid model of a direct internal reforming solid oxide fuel cell. International Journal of Hydrogen Energy, 2012, 37, 2498-2508.	7.1	29
97	Thermodynamic analysis of combined unit of biomass gasifier and tar steam reformer for hydrogen production and tar removal. International Journal of Hydrogen Energy, 2013, 38, 3930-3936.	7.1	29
98	Preparation of Au/C catalysts using microwave-assisted and ultrasonic-assisted methods for acetylene hydrochlorination. Applied Catalysis A: General, 2014, 475, 292-296.	4.3	29
99	Bi-metallic CuO-NiO based multifunctional material for hydrogen production from sorption-enhanced chemical looping autothermal reforming of ethanol. Chemical Engineering Journal, 2020, 398, 125543.	12.7	29
100	Reactivity of high surface area CeO2 synthesized by surfactant-assisted method to ethanol decomposition with and without steam. Chemical Engineering Journal, 2007, 127, 31-38.	12.7	28
101	display=" ⁱ inline" overflow="scroll"> <mml:msub><mml:mrow><mml:mi>CeO</mml:mi></mml:mrow><mml:mrow><mml:mn>2and <mml:math <br="" altimg="si74.gif" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mi>Ce</mml:mi><mml:mo>â€"</mml:mo><mml:msub><mml:mrow><mml:mi>ZrO<td></td><td>/mmgl:mrow> ml:mrow> <n< td=""></n<></td></mml:mi></mml:mrow></mml:msub></mml:math></mml:mn></mml:mrow></mml:msub>		/mmgl:mrow> ml:mrow> <n< td=""></n<>
102	toward stea. Chemical Engineering Science, 2009, 64, 459-466. Systematic methods and tools for design of sustainable chemical processes for CO2 utilization. Computers and Chemical Engineering, 2016, 87, 125-144.	3.8	28
103	Influence of CaO precursor on CO2 capture performance and sorption-enhanced steam ethanol reforming. International Journal of Hydrogen Energy, 2019, 44, 20649-20662.	7.1	28
104	Oxygen transport through LSM/YSZ/LaAlO system for use of fuel cell type reactor. Chemical Engineering Journal, 2005, 106, 35-42.	12.7	27
105	Hybrid reactive distillation systems for n-butyl acetate production from dilute acetic acid. Journal of Industrial and Engineering Chemistry, 2008, 14, 796-803.	5.8	27
106	Hydroxylation of benzene to phenol on Fe/TiO2 catalysts loaded with different types of second metal. Catalysis Communications, 2008, 9, 1886-1890.	3.3	27
107	Steam reforming of LPG over Ni and Rh supported on Gd-CeO2 and Al2O3: Effect of support and feed composition. Fuel, 2011, 90, 136-141.	6.4	27
108	Comparison of different kraft lignin-based vanillin production processes. Computers and Chemical Engineering, 2018, 117, 159-170.	3.8	27

#	Article	IF	CITATIONS
109	Kinetic dependencies and reaction pathways in hydrocarbon and oxyhydrocarbon conversions catalyzed by ceria-based materials. Applied Catalysis B: Environmental, 2008, 82, 103-113.	20.2	26
110	The loss of <scp>OSA</scp> â€modified starch emulsifier property during the highâ€pressure homogeniser and encapsulation of multiâ€flavour bergamot oil by spray drying. International Journal of Food Science and Technology, 2012, 47, 2325-2333.	2.7	26
111	Reactive distillation for synthesis of glycerol carbonate via glycerolysis of urea. Chemical Engineering and Processing: Process Intensification, 2013, 70, 103-109.	3.6	26
112	Effect of KI and KOH Impregnations over Activated Carbon on H ₂ S Adsorption Performance at Low and High Temperatures. Separation Science and Technology, 2014, 49, 354-366.	2.5	26
113	A Pervaporation Membrane Reactor for Liquid Phase Synthesis of Ethyl tert-Butyl Ether from tert-Butyl Alcohol and Ethanol Journal of Chemical Engineering of Japan, 2002, 35, 547-556.	0.6	25
114	Selective oxidation of methane in an SOFC-type reactor: effect of applied potential. Chemical Engineering Journal, 2003, 93, 3-9.	12.7	25
115	Impact of temperature ramping rate during calcination on characteristics of nano-ZrO2 and its catalytic activity for isosynthesis. Journal of Molecular Catalysis A, 2008, 280, 35-42.	4.8	25
116	Performance of biogas-fed solid oxide fuel cell systems integrated with membrane module for CO2 removal. Chemical Engineering and Processing: Process Intensification, 2009, 48, 672-682.	3.6	25
117	Hydrodynamics of countercurrent gas–liquid flow in inclined packed beds – A prospect for stretching flooding capacity with small packings. Chemical Engineering Science, 2015, 138, 256-265.	3.8	25
118	Performance evaluation of biogas upgrading systems from swine farm to biomethane production for renewable hydrogen source. International Journal of Hydrogen Energy, 2019, 44, 23135-23148.	7.1	25
119	Effects of electrolyte type and flow pattern on performance of methanol-fuelled solid oxide fuel cells. Journal of Power Sources, 2005, 148, 18-23.	7.8	24
120	Modelling of tubular-designed solid oxide fuel cell with indirect internal reforming operation fed by different primary fuels. Journal of Power Sources, 2010, 195, 69-78.	7.8	24
121	Hydrogen production from supercritical water reforming of glycerol in an empty Inconel 625 reactor. International Journal of Hydrogen Energy, 2014, 39, 159-170.	7.1	24
122	Optimization of hydrogen production from three reforming approaches of glycerol via using supercritical water with in situ CO2 separation. International Journal of Hydrogen Energy, 2019, 44, 2128-2140.	7.1	24
123	Theoretical study of the application of porous membrane reactor to oxidative dehydrogenation of n-butane. Chemical Engineering Journal, 2002, 85, 69-79.	12.7	23
124	High temperature desulfurization over nano-scale high surface area ceria for application in SOFC. Korean Journal of Chemical Engineering, 2008, 25, 223-230.	2.7	23
125	Simulation of Methane Steam Reforming Enhanced by <i>in Situ</i> CO ₂ Sorption Using K ₂ CO ₃ -Promoted Hydrotalcites for H ₂ Production. Energy & amp; Fuels, 2013, 27, 4457-4470.	5.1	23
126	Parametric analysis of a circulating fluidized bed biomass gasifier for hydrogen production. Energy, 2015. 82. 406-413.	8.8	23

#	Article	IF	CITATIONS
127	Encapsulation of lemongrass oil with cyclodextrins by spray drying and its controlled release characteristics. Bioscience, Biotechnology and Biochemistry, 2017, 81, 718-723.	1.3	23
128	Effect of pretreatment atmosphere of WO _x /SiO ₂ catalysts on metathesis of ethylene and 2-butene to propylene. RSC Advances, 2018, 8, 11693-11704.	3.6	23
129	Incorporation of hydrogen by-product from NaOCH3 production for methanol synthesis via CO2 hydrogenation: Process analysis and economic evaluation. Journal of Cleaner Production, 2019, 212, 893-909.	9.3	23
130	Analysis of thermally coupling steam and tri-reforming processes for the production of hydrogen from bio-oil. International Journal of Hydrogen Energy, 2016, 41, 18370-18379.	7.1	22
131	Effect of Fe open metal site in metalâ€organic frameworks on postâ€combustion CO ₂ capture performance. , 2017, 7, 383-394.		22
132	Parametric study of hydrogen production via sorption enhanced steam methane reforming in a circulating fluidized bed riser. Chemical Engineering Science, 2018, 192, 1041-1057.	3.8	22
133	Natural Kaolin-Based Ni Catalysts for CO ₂ Methanation: On the Effect of Ce Enhancement and Microwave-Assisted Hydrothermal Synthesis. ACS Omega, 2021, 6, 13779-13794.	3.5	22
134	A study on isosynthesis via CO hydrogenation over ZrO2–CeO2 mixed oxide catalysts. Catalysis Communications, 2009, 10, 494-501.	3.3	21
135	Reactivity of Ce-ZrO2 (doped with La-, Gd-, Nb-, and Sm-) toward partial oxidation of liquefied petroleum gas: Its application for sequential partial oxidation/steam reforming. International Journal of Hydrogen Energy, 2010, 35, 6747-6756.	7.1	21
136	Enhanced performance of solid oxide electrolysis cells by integration with a partial oxidation reactor: Energy and exergy analyses. Energy Conversion and Management, 2016, 129, 189-199.	9.2	21
137	Conceptual design and life cycle assessment of decentralized power generation by HT-PEMFC system with sorption enhanced water gas shift loop. Energy Conversion and Management, 2018, 171, 20-30.	9.2	21
138	Effect of CuO/ZnO catalyst preparation condition on alcohol-assisted methanol synthesis from carbon dioxide and hydrogen. International Journal of Hydrogen Energy, 2019, 44, 20782-20791.	7.1	20
139	Reactivity of Ni/SiO2·MgO toward carbon dioxide reforming of methane under steady state and periodic operations. Journal of Industrial and Engineering Chemistry, 2009, 15, 488-497.	5.8	19
140	Influence of stack arrangement on performance of multiple-stack solid oxide fuel cells with non-uniform potential operation. Journal of Power Sources, 2009, 187, 1-7.	7.8	19
141	Catalytic H2O and CO2 reforming of CH4 over perovskite-based La0.8Sr0.2Cr0.9Ni0.1O3: Effects of pre-treatment and co-reactant/CH4 on its reforming characteristics. Applied Catalysis A: General, 2010, 386, 194-200.	4.3	19
142	Methodology for design and analysis of reactive distillation involving multielement systems. Chemical Engineering Research and Design, 2011, 89, 1295-1307.	5.6	19
143	Optimal design of different reforming processes of the actual composition of bio-oil for high-temperature PEMFC systems. International Journal of Hydrogen Energy, 2017, 42, 1977-1988.	7.1	19
144	Simulation of intensified process of sorption enhanced chemical-looping reforming of methane: Comparison with conventional processes. Computers and Chemical Engineering, 2017, 105, 237-245.	3.8	19

#	Article	IF	CITATIONS
145	Solar–Wind–Bio Ecosystem for Biomass Cascade Utilization with Multigeneration of Formic Acid, Hydrogen, and Graphene. ACS Sustainable Chemistry and Engineering, 2019, 7, 2558-2568.	6.7	19
146	Surfactant assisted CaO-based sorbent synthesis and their application to high-temperature CO2 capture. Powder Technology, 2019, 344, 208-221.	4.2	19
147	Solvent-Free Hydrodeoxygenation of Triglycerides to Diesel-like Hydrocarbons over Pt-Decorated MoO ₂ Catalysts. ACS Omega, 2020, 5, 6956-6966.	3.5	19
148	Techno-economic analysis of alternative processes for alcohol-assisted methanol synthesis from carbon dioxide and hydrogen. International Journal of Hydrogen Energy, 2021, 46, 24591-24606.	7.1	19
149	Performance analysis of methanol-fueled solid oxide fuel cell system incorporated with palladium membrane reactor. Chemical Engineering Journal, 2008, 138, 436-441.	12.7	18
150	Enhanced effectiveness of Rhizopus oryzae by immobilization in a static bed fermentor for l -lactic acid production. Process Biochemistry, 2017, 52, 44-52.	3.7	18
151	Process development of sustainable biorefinery system integrated into the existing pulping process. Journal of Cleaner Production, 2020, 255, 120278.	9.3	18
152	Techno-economic analysis of hydrogen production from dehydrogenation and steam reforming of ethanol for carbon dioxide conversion to methanol. International Journal of Hydrogen Energy, 2021, 46, 30891-30902.	7.1	18
153	Production of ethyltert-butyl ether fromtert-butyl alcohol and ethanol catalyzed byl²-zeolite in reactive distillation. Korean Journal of Chemical Engineering, 2004, 21, 1139-1146.	2.7	17
154	Surface segregation of siloxane containing component in polysiloxane-block-polyimide ands-BPDA/ODA polyimide blends. Polymer Engineering and Science, 2007, 47, 489-498.	3.1	17
155	Carbon dioxide reforming of methane under periodic operation. Korean Journal of Chemical Engineering, 2007, 24, 44-50.	2.7	17
156	Au/La1â^'xSrxMnO3 nanocomposite for chemical-energy cogeneration in solid oxide fuel cell reactor. Journal of Industrial and Engineering Chemistry, 2012, 18, 1819-1823.	5.8	17
157	Analysis of hydrogen production from methane autothermal reformer with a dual catalyst-bed configuration. Theoretical Foundations of Chemical Engineering, 2012, 46, 658-665.	0.7	17
158	The adsorption aspect of Cu2+ and Zn2+ on MCM-41 and SDS-modified MCM-41. Inorganic Chemistry Communication, 2014, 46, 301-304.	3.9	17
159	Simultaneous production of hydrogen and carbon nanotubes from biogas over mono- and bimetallic catalyst. Journal of Environmental Chemical Engineering, 2022, 10, 107910.	6.7	17
160	Effects of support and co-fed elements on steam reforming of palm fatty acid distillate (PFAD) over Rh-based catalysts. Applied Catalysis A: General, 2010, 383, 50-57.	4.3	16
161	PERFORMANCE OF SODIUM-IMPREGNATED ACTIVATED CARBONS TOWARD LOW AND HIGH TEMPERATURE H ₂ S ADSORPTION. Chemical Engineering Communications, 2014, 201, 257-271.	2.6	16
162	Conversion of biomass tar containing sulphur to syngas by GdCeO2 coated NiFe bimetallic-based catalysis A: General, 2014, 478, 9-14.	4.3	16

#	Article	IF	CITATIONS
163	Comparison between parallel and checked arrangements of micro reformer for H2 production from methane. Chemical Engineering Journal, 2015, 268, 135-143.	12.7	16
164	Reduction of carbon dioxide via catalytic hydrogenation over copper-based catalysts modified by oyster shell-derived calcium oxide. Journal of Environmental Chemical Engineering, 2017, 5, 3115-3121.	6.7	16
165	Different water removal methods for facilitating biodiesel production from low-cost waste cooking oil containing high water content in hybridized reactive distillation. Renewable Energy, 2020, 162, 1906-1918.	8.9	16
166	Extractive reaction for epoxidation of cyclohexene to cyclohexene oxide using dioxirane in ketone/Oxone® system. Chemical Engineering Journal, 2003, 92, 131-139.	12.7	15
167	Oxidative Coupling of Methane in the LSM/YSZ/LaAlO SOFC Reactor. Journal of Chemical Engineering of Japan, 2004, 37, 1461-1470.	0.6	15
168	Thermodynamic assessment of solid oxide fuel cell system integrated with bioethanol purification unit. Journal of Power Sources, 2007, 174, 191-198.	7.8	15
169	Simultaneous enhancement of ethanol supplement in gasoline and its quality improvement. Fuel Processing Technology, 2008, 89, 1365-1370.	7.2	15
170	Production of n-butyl acetate from dilute acetic acid and n-butanol using different reactive distillation systems: Economic analysis. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40, 21-28.	5.3	15
171	Alternative Hydrocarbon Biofuel Production via Hydrotreating under a Synthesis Gas Atmosphere. Energy & Fuels, 2017, 31, 12256-12262.	5.1	15
172	Water influence on the kinetics of transesterification using CaO catalyst to produce biodiesel. Fuel, 2021, 296, 120653.	6.4	15
173	Fine-tuned fabrication parameters of CaO catalyst pellets for transesterification of palm oil to biodiesel. Fuel, 2022, 323, 124356.	6.4	15
174	Gasoline upgrading by self-etherification with ethanol on modified beta-zeolite. Fuel Processing Technology, 2011, 92, 1999-2004.	7.2	14
175	Catalytic Activity of Bimetallic Cu-Ag/MgO-SiO2 Toward the Conversion of Ethanol to 1,3-Butadiene. International Journal of Chemical Reactor Engineering, 2016, 14, 945-954.	1.1	14
176	Improvement of oxidation stability of fatty acid methyl esters derived from soybean oil via partial hydrogenation using dielectric barrier discharge plasma. International Journal of Energy Research, 2021, 45, 4519-4533.	4.5	14
177	La2O3/CaO catalyst derived from eggshells: Effects of preparation method and La content on textural properties and catalytic activity for transesterification. Catalysis Communications, 2021, 149, 106247.	3.3	14
178	Kinetics for Dehydrogenation of Propane on Pt-Sn-K/.GAMMAAl2O3 Catalyst Journal of Chemical Engineering of Japan, 2000, 33, 529-532.	0.6	13
179	TPD study in LSM/YSZ/LaAlO system for the use of fuel cell type reactor. Solid State Ionics, 2004, 166, 127-136.	2.7	13
180	Fe(III), Cu(II), V(V)/TiO2 for Hydroxylation of Benzene to Phenol with Hydrogen Peroxide at Room Temperature. Journal of Chemical Engineering of Japan, 2007, 40, 415-421.	0.6	13

#	Article	IF	CITATIONS
181	Simulation of solid oxide fuel cell systems integrated with sequential CaO–CO2 capture unit. Chemical Engineering Journal, 2009, 147, 336-341.	12.7	13
182	Alternative concept for SOFC with direct internal reforming operation: Benefits from inserting catalyst rod. AICHE Journal, 2010, 56, 1639-1650.	3.6	13
183	Development of Au/C catalysts by the microwave-assisted method for the selective hydrochlorination of acetylene. Reaction Kinetics, Mechanisms and Catalysis, 2014, 112, 189-198.	1.7	13
184	Effect of flow arrangement on micro membrane reforming for H 2 production from methane. Chemical Engineering Journal, 2016, 293, 319-326.	12.7	13
185	Optimal design and performance analyses of the glycerol ether production process using a reactive distillation column. Journal of Industrial and Engineering Chemistry, 2016, 43, 93-105.	5.8	13
186	Theoretical study of carbon dioxide adsorption and diffusion in MIL-127(Fe) metal organic framework. Chemical Physics, 2017, 491, 118-125.	1.9	13
187	An assessment of the longevity of samarium cobalt trioxide perovskite catalyst during the conversion of greenhouse gases into syngas. Journal of Cleaner Production, 2018, 185, 576-587.	9.3	13
188	Effects of calcination and pretreatment temperatures on the catalytic activity and stability of H ₂ -treated WO ₃ /SiO ₂ catalysts in metathesis of ethylene and 2-butene. RSC Advances, 2018, 8, 28555-28568.	3.6	13
189	Simple and effective technology for sustainable biodiesel production using high-power household fruit blender. Journal of Cleaner Production, 2019, 237, 117842.	9.3	13
190	Comparison of chemical reaction kinetic models for corn cob pyrolysis. Energy Reports, 2020, 6, 168-178.	5.1	13
191	Selective hydrogenolysis of furfural into fuel-additive 2-methylfuran over a rhenium-promoted copper catalyst. Sustainable Energy and Fuels, 2021, 5, 1379-1393.	4.9	13
192	Pyrolysis kinetic parameters investigation of single and tri-component biomass: Models fitting via comparative model-free methods. Renewable Energy, 2022, 182, 494-507.	8.9	13
193	Simulation studies on reactive distillation for synthesis oftert-amyl ethyl ether. Korean Journal of Chemical Engineering, 2005, 22, 387-392.	2.7	12
194	Simulation of Oxidative Coupling of Methane in Solid Oxide Fuel Cell Type Reactor for C2 Hydrocarbon and Electricity Co-Generation. Journal of Chemical Engineering of Japan, 2005, 38, 841-848.	0.6	12
195	Operation viability and performance of solid oxide fuel cell fuelled by different feeds. Chemical Engineering Journal, 2009, 155, 411-418.	12.7	12
196	Integration of solid oxide fuel cell and palladium membrane reactor: Technical and economic analysis. International Journal of Hydrogen Energy, 2009, 34, 3894-3907.	7.1	12
197	Partial oxidation of palm fatty acids over Ceâ€ZrO ₂ : Roles of catalyst surface area, lattice oxygen capacity and mobility. AICHE Journal, 2011, 57, 2861-2869.	3.6	12
198	A modeling study of module arrangement and experimental investigation of single stage module for physical absorption of biogas using hollow fiber membrane contactors. Journal of Membrane Science, 2018, 549, 283-294.	8.2	12

#	Article	IF	CITATIONS
199	Comparative analysis of biomass and coal based co-gasification processes with and without CO2 capture for HT-PEMFCs. International Journal of Hydrogen Energy, 2019, 44, 2216-2229.	7.1	12
200	Systematic design of separation process for bioethanol production from corn stover. BMC Chemical Engineering, 2020, 2, .	3.4	12
201	Hydrogen and power generation via integrated bio-oil sorption-enhanced steam reforming and solid oxide fuel cell systems: Economic feasibility analysis. International Journal of Hydrogen Energy, 2021, 46, 11482-11493.	7.1	12
202	Novel biorefinery-Integrated-Kraft-pulping network for sustainable development. Chemical Engineering and Processing: Process Intensification, 2021, 163, 108373.	3.6	12
203	Bifunctional Catalyst NiFe–MgAl for Hydrogen Production from Chemical Looping Ethanol Reforming. Energy & Fuels, 2021, 35, 11580-11592.	5.1	12
204	Catalytic transfer hydrogenation of furfural to furfuryl alcohol and 2-methylfuran over CuFe catalysts: Ex situ observation of simultaneous structural phase transformation. Fuel Processing Technology, 2022, 231, 107256.	7.2	12
205	Effect of mode of operation on hydrogen production from glycerol at thermal neutral conditions: Thermodynamic analysis. International Journal of Hydrogen Energy, 2010, 35, 10257-10270.	7.1	11
206	Integrated methane decomposition and solid oxide fuel cell for efficient electrical power generation and carbon capture. Chemical Engineering Research and Design, 2012, 90, 2223-2234.	5.6	11
207	Sustainable Process Design. Computer Aided Chemical Engineering, 2015, 36, 175-195.	0.5	11
208	Molecular simulations of a CO2/CO mixture in MIL-127. Chemical Physics Letters, 2018, 696, 86-91.	2.6	11
209	Factorial design analysis of parameters for the sorption-enhanced steam reforming of ethanol in a circulating fluidized bed riser using CFD. RSC Advances, 2018, 8, 24209-24230.	3.6	11
210	Performance comparison among different multifunctional reactors operated under energy self-sufficiency for sustainable hydrogen production from ethanol. International Journal of Hydrogen Energy, 2020, 45, 18309-18320.	7.1	11
211	Low-temperature and atmospheric pressure plasma for palm biodiesel hydrogenation. Scientific Reports, 2021, 11, 14224.	3.3	11
212	Low-cost alternative biodiesel production apparatus based on household food blender for continuous biodiesel production for small communities. Scientific Reports, 2021, 11, 13827.	3.3	11
213	Permeation of ethanol and methanol vapours through a porous alumina membrane. Chemical Engineering Science, 1996, 51, 5241-5250.	3.8	10
214	Simulation of membrane microreactor for fuel cell with methane feed. Catalysis Today, 2003, 82, 223-232.	4.4	10
215	Self-Etherification Process for Cleaner Fuel Production. Catalysis Letters, 2009, 128, 154-163.	2.6	10
216	Kinetics of liquid phase synthesis of tert-amyl ethyl ether from tert-amyl alcohol and ethanol over Amberlyst 16. Journal of Industrial and Engineering Chemistry, 2009, 15, 451-457.	5.8	10

#	Article	IF	CITATIONS
217	Gas Flow Visualization in Low Aspect Ratio Packed Beds by Three-Dimensional Modeling and Near-Infrared Tomography. Industrial & Engineering Chemistry Research, 2015, 54, 12714-12729.	3.7	10
218	Performance evaluation of different combined systems of biochar gasifier, reformer and CO 2 capture unit for synthesis gas production. International Journal of Hydrogen Energy, 2016, 41, 13408-13418.	7.1	10
219	Characterization of D-lactic acid, spore-forming bacteria and Terrilactibacillus laevilacticus SK5-6 as potential industrial strains. Annals of Microbiology, 2017, 67, 763-778.	2.6	10
220	Analytical study of membrane wetting at high operating pressure for physical absorption of CO2 using hollow fiber membrane contactors. Chemical Engineering Research and Design, 2017, 126, 265-277.	5.6	10
221	Experimental study of dual fixed bed biochar-catalytic gasification with simultaneous feed of O2-steam-CO2 for synthesis gas or hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 14974-14986.	7.1	10
222	Performance comparison of different membrane reactors for combined methanol synthesis and biogas upgrading. Chemical Engineering and Processing: Process Intensification, 2019, 136, 191-200.	3.6	10
223	Syngas Production from Combined Steam Gasification of Biochar and a Sorption-Enhanced Water–Gas Shift Reaction with the Utilization of CO2. Processes, 2019, 7, 349.	2.8	10
224	Thermally double coupled reactor coupling aqueous phase glycerol reforming and methanol synthesis. Catalysis Today, 2021, 375, 181-190.	4.4	10
225	Mechanism of <scp>CaO</scp> catalyst deactivation with unconventional monitoring method for glycerol carbonate production via transesterification of glycerol with dimethyl carbonate. International Journal of Energy Research, 2022, 46, 1646-1658.	4.5	10
226	Simultaneous production of hydrogen and carbon nanotubes from biogas: On the effect of Ce addition to CoMo/MgO catalyst. International Journal of Hydrogen Energy, 2021, 46, 38175-38190.	7.1	10
227	Hybrid Process of Reactive Distillation and Pervaporation for the Production of Tert-amyl Ethyl Ether. Chinese Journal of Chemical Engineering, 2008, 16, 100-103.	3.5	9
228	Thermodynamic analysis of calcium oxide assisted hydrogen production from biogas. Journal of Industrial and Engineering Chemistry, 2010, 16, 785-789.	5.8	9
229	Adsorption-membrane hybrid system for ethanol steam reforming: Thermodynamic analysis. International Journal of Hydrogen Energy, 2011, 36, 14428-14434.	7.1	9
230	Process integration of dimethyl carbonate and ethylene glycol production from biomass and heat exchanger network design. Chemical Engineering and Processing: Process Intensification, 2016, 107, 80-93.	3.6	9
231	A comparative study of sodium/hydrogen titanate nanotubes/nanoribbons on destruction of recalcitrant compounds and sedimentation. Journal of Cleaner Production, 2017, 148, 905-914.	9.3	9
232	Carbon dioxide reduction to synthetic fuel on zirconia supported copper-based catalysts and gibbs free energy minimization: Methanol and dimethyl ether synthesis. Journal of Environmental Chemical Engineering, 2021, 9, 104979.	6.7	9
233	Continuous biodiesel production based on hand blender technology for sustainable household utilization. Journal of Cleaner Production, 2021, 297, 126737.	9.3	9
234	High-efficiency biodiesel production using rotating tube reactor: New insight of operating parameters on hydrodynamic regime and biodiesel yield. Renewable and Sustainable Energy Reviews, 2021, 151, 111430.	16.4	9

#	Article	IF	CITATIONS
235	Simultaneous production of hydrogen and carbon nanotubes from biogas: On the design of combined process. International Journal of Hydrogen Energy, 2022, 47, 14432-14452.	7.1	9
236	Effect of surface modification on parallel flow in microchannel with guideline structure. Chemical Engineering Journal, 2013, 215-216, 404-410.	12.7	8
237	Catalytic performance improvement of styrene hydrogenation in trickle bed reactor by using periodic operation. Korean Journal of Chemical Engineering, 2013, 30, 593-597.	2.7	8
238	Multiphase parallel flow stabilization in curved microchannel. Chemical Engineering Journal, 2014, 253, 332-340.	12.7	8
239	A homofermentative Bacillus sp. BC-001 and its performance as a potential l-lactate industrial strain. Bioprocess and Biosystems Engineering, 2017, 40, 1787-1799.	3.4	8
240	Synthesis of glycerol carbonate from dimethyl carbonate and glycerol using CaO derived from eggshells. MATEC Web of Conferences, 2018, 192, 03045.	0.2	8
241	Effect of Water Content in Waste Cooking Oil on Biodiesel Production via Ester-transesterification in a Single Reactive Distillation. IOP Conference Series: Materials Science and Engineering, 2019, 559, 012014.	0.6	8
242	Simulations of sorbent regeneration in a circulating fluidized bed system for sorption enhanced steam reforming with dolomite. Particuology, 2020, 50, 156-172.	3.6	8
243	Phase transformation and electrical properties of bismuth oxide doped scandium cerium and gadolinium stabilized zirconia (0.5Gd0.5Ce10ScSZ) for solid oxide electrolysis cell. International Journal of Hydrogen Energy, 2020, 45, 29953-29965.	7.1	8
244	Effect 3A and 5A molecular sieve on alcohol-assisted methanol synthesis from CO2 and H2 over Cu/ZnO catalyst. International Journal of Hydrogen Energy, 2021, 46, 30948-30958.	7.1	8
245	Catalytic Hydrotreating of Crude Pongamia pinnata Oil to Bio-Hydrogenated Diesel over Sulfided NiMo Catalyst. Energies, 2022, 15, 1547.	3.1	8
246	Permeation of acetone and isopropanol vapours through a porous alumina membrane. Chemical Engineering Science, 1998, 53, 1367-1374.	3.8	7
247	Improvement of solid oxide fuel cell performance by using non-uniform potential operation. Journal of Power Sources, 2007, 167, 139-144.	7.8	7
248	Effect of operating conditions and gas flow patterns on the system performances of IIR-SOFC fueled by methanol. International Journal of Hydrogen Energy, 2009, 34, 6415-6424.	7.1	7
249	Performance improvement of solid oxide fuel cell system using palladium membrane reactor with different operation modes. Chemical Engineering Journal, 2009, 146, 112-119.	12.7	7
250	Selection of appropriate primary fuel for hydrogen production for different fuel cell types: Comparison between decomposition and steam reforming. International Journal of Hydrogen Energy, 2011, 36, 7696-7706.	7.1	7
251	Electrochemical promotion of propane oxidation over Pd, Ir, and Ru catalyst-electrodes deposited on YSZ. Ionics, 2013, 19, 1705-1714.	2.4	7
252	Using a membrane reactor for the oxidative coupling of methane: simulation and optimization. Clean Technologies and Environmental Policy, 2014, 16, 1295-1306.	4.1	7

#	Article	IF	CITATIONS
253	Performance of an improved combination unit of Pd-membrane methane steam reformer and intermediate temperature solid oxide fuel cell (C-Pd-ITSOFC). International Journal of Hydrogen Energy, 2015, 40, 1894-1901.	7.1	7
254	Process and Energy Intensification of Glycerol Carbonate Production from Glycerol and Dimethyl Carbonate in the Presence of Eggshell-Derived CaO Heterogeneous Catalyst. Energies, 2021, 14, 4249.	3.1	7
255	Hydrogen Production from Sorption Enhanced Biogas Steam Reforming Using Nickel-Based Catalysts. Engineering Journal, 2013, 17, 19-34.	1.0	7
256	Synthesis of Na2WO4-Mn Supported YSZ as a Potential Anode Catalyst for Oxidative Coupling of Methane in SOFC Reactor. Engineering Journal, 2015, 19, 13-20.	1.0	7
257	Design of a thermally integrated bioethanol-fueled solid oxide fuel cell system integrated with a distillation column. Journal of Power Sources, 2009, 187, 190-203.	7.8	6
258	Isosynthesis via CO hydrogenation over SO4–ZrO2 catalysts. Journal of Industrial and Engineering Chemistry, 2010, 16, 411-418.	5.8	6
259	Flow Pattern of Liquid Multiphase Flow in Microreactors with Different Guideline Structures. Journal of Chemical Engineering of Japan, 2011, 44, 649-652.	0.6	6
260	Performance improvement of bioethanol-fuelled solid oxide fuel cell system by using pervaporation. International Journal of Hydrogen Energy, 2011, 36, 5067-5075.	7.1	6
261	Kinetics and reactive stripping modelling of hydrogen isotopic exchange of deuterated waters. Chemical Engineering and Processing: Process Intensification, 2016, 108, 58-73.	3.6	6
262	Intensification of Continuous Biodiesel Production Using a Spinning Disc Reactor. Journal of Chemical Engineering of Japan, 2019, 52, 545-553.	0.6	6
263	Fe2O3/CaO-Al2O3 multifunctional catalyst for hydrogen production by sorption-enhanced chemical looping reforming of ethanol. Biomass Conversion and Biorefinery, 2020, , 1.	4.6	6
264	Simultaneous Enhancement of Photocatalytic Bactericidal Activity and Strength Properties of Acrylonitrile-Butadiene-Styrene Plastic Via a Facile Preparation with Silane/TiO2. Polymers, 2020, 12, 917.	4.5	6
265	Design of hybrid pellet catalysts of WO3/Si-Al and PtIn/hydrotalcite via dehydrogenation and metathesis reactions for production of olefins from propane. Chemical Engineering Science, 2021, 229, 116025.	3.8	6
266	Oxidative Coupling of Methane over YSZ Support Catalysts for Application in C2 Hydrocarbon Production. Engineering Journal, 2015, 19, 1-11.	1.0	6
267	Performance Assessment of Bioethanol-Fed Solid Oxide Fuel Cell System Integrated with Distillation Column. ECS Transactions, 2007, 7, 1475-1482.	0.5	5
268	The use of dilute acetic acid for butyl acetate production in a reactive distillation: Simulation and control studies. Korean Journal of Chemical Engineering, 2008, 25, 1252-1266.	2.7	5
269	A REACTION-EXTRACTION-REGENERATION SYSTEM FOR HIGHLY SELECTIVE OXIDATION OF BENZENE TO PHENOL. Chemical Engineering Communications, 2010, 197, 1140-1151.	2.6	5
270	Comparative study of fuel gas production for SOFC from steam and supercritical-water reforming of bioethanol. International Journal of Hydrogen Energy, 2013, 38, 5555-5562.	7.1	5

#	ARTICLE	IF	CITATIONS
271	Modification of Green Calcium Oxide and Characteristics for Clean Energy Catalysts. Energy Procedia, 2015, 79, 685-690.	1.8	5
272	Correlative effect of dissolved oxygen and key enzyme inhibitors responsible for l-lactate production by immobilized Rhizopus oryzae NRRL395 cultivated in a static bed bioreactor. Process Biochemistry, 2016, 51, 204-212.	3.7	5
273	Effect of strontium and zirconium doped barium cerate on the performance of proton ceramic electrolyser cell for syngas production from carbon dioxide and steam. International Journal of Hydrogen Energy, 2019, 44, 20634-20640.	7.1	5
274	Deactivation of the preferential oxidation of CO in packed bed reactor by 3D modelling and near-infrared tomography. Chemical Engineering Journal, 2019, 378, 122082.	12.7	5
275	Liquid–Liquid Phase Equilibria of Aqueous Biphasic Systems Based on Glycerol Formal: Application on Tetracycline Recovery from Water. Journal of Chemical & Engineering Data, 2019, 64, 4856-4862.	1.9	5
276	Intrinsic kinetic study of 1-butene isomerization over magnesium oxide catalyst via a Berty stationary catalyst basket reactor. RSC Advances, 2020, 10, 36667-36677.	3.6	5
277	Compact Heat Integrated Reactor System of Steam Reformer, Shift Reactor and Combustor for Hydrogen Production from Ethanol. Processes, 2020, 8, 708.	2.8	5
278	Simple Fabrication of a Continuous-Flow Photocatalytic Reactor Using Dopamine-Assisted Immobilization onto a Fluoropolymer Tubing. Industrial & Engineering Chemistry Research, 2022, 61, 1322-1331.	3.7	5
279	Effect of Co-Doping on Cu/CaO Catalysts for Selective Furfural Hydrogenation into Furfuryl Alcohol. Nanomaterials, 2022, 12, 1578.	4.1	5
280	Fabrication of La0.8Sr0.2CrO3-based Perovskite Film via Flame-Assisted Vapor Deposition for H2 Production by Reforming. Chemical Vapor Deposition, 2010, 16, 311-321.	1.3	4
281	Catalytic Steam and Autothermal Reforming of Used Lubricating Oil (ULO) over Rh- and Ni-Based Catalysts. Industrial & Engineering Chemistry Research, 2010, 49, 10981-10985.	3.7	4
282	Development of Au/La1â^'xSrxMnO3 nanocomposites for further application in a solid oxide fuel cell type reactor. Journal of Industrial and Engineering Chemistry, 2011, 17, 474-478.	5.8	4
283	Thermodynamic analysis of hydrogen production from glycerol at energy selfâ€sufficient conditions. Canadian Journal of Chemical Engineering, 2012, 90, 1112-1119.	1.7	4
284	Evaluation of performance and operation viability of non-uniform potential solid oxide fuel cell fueled by reformed methane. Journal of Power Sources, 2014, 246, 719-728.	7.8	4
285	Modeling of thermally-coupled monolithic membrane reformer for vehicular hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 26308-26319.	7.1	4
286	Measurement of Solubility and Physical Properties of Aqueous Solution of 2-(Diethylamino)ethanol for CO 2 Capture. Energy Procedia, 2017, 142, 3625-3630.	1.8	4
287	Metabolic responses of Aspergillus terreus under low dissolved oxygen and pH levels. Annals of Microbiology, 2018, 68, 195-205.	2.6	4
288	Theoretical aspects in structural distortion and the electronic properties of lithium peroxide under high pressure. Physical Chemistry Chemical Physics, 2018, 20, 9488-9497.	2.8	4

#	Article	IF	CITATIONS
289	Techno-economic analysis of co-production of bio-hydrogenated diesel from palm oil and methanol. Energy Conversion and Management, 2021, 244, 114464.	9.2	4
290	Fuel Processing Technologies for Hydrogen Production from Methane. Engineering Journal, 2012, 16, 1-4.	1.0	4
291	Two-Dimensional Mathematical Modeling of the Oxidative Coupling of Methane in a Membrane Reactor. Engineering Journal, 2016, 20, 17-33.	1.0	4
292	Incorporation of diethyl ether production to existing bioethanol process: Techno-economic analysis. Journal of Cleaner Production, 2021, 327, 129438.	9.3	4
293	Lignocellulosic Bioethanol Production of Napier Grass Using Trichoderma reesei and Saccharomyces cerevisiae Co-Culture Fermentation. International Journal of Renewable Energy Development, 2022, 11, 423-433.	2.4	4
294	Comprehensive Review on Potential Contamination in Fuel Ethanol Production with Proposed Specific Guideline Criteria. Energies, 2022, 15, 2986.	3.1	4
295	Improved hydrogenation process for margarine production with no trans fatty acid formation by non-thermal plasma with needle-in-tube configuration. Journal of Food Engineering, 2022, 334, 111167.	5.2	4
296	Cascade Design for Uranium Enrichment Employing Chemical Exchange and Solvent Extraction. Separation Science and Technology, 1997, 32, 1037-1051.	2.5	3
297	Steam Reforming of Ethanol over Ni on High Surface Area Ceria Support: Influence of Redox Properties on the Catalyst Stability and Product Selectivities. ECS Transactions, 2007, 7, 1717-1724.	0.5	3
298	Technical and economic study of integrated system of solid oxide fuel cell, palladium membrane reactor, and CO2 sorption enhancement unit. Chemical Engineering and Processing: Process Intensification, 2010, 49, 1006-1016.	3.6	3
299	ENERGY EFFICIENCY EVALUATION FOR A "GREEN―POWER GENERATION PROCESS WITH MINIMUM EFFORT CARBON DIOXIDE CAPTURE AND STORAGE. Chemical Engineering Communications, 2012, 199, 1642-1651.	ON 2.6	3
300	Reaction Kinetic-Induced Changes in the Electrochemically Promoted C2H4 Oxidation on Pt/YSZ. Catalysis Letters, 2013, 143, 445-453.	2.6	3
301	Comparison of physically mixed and separated MgO and WO3/SiO2 catalyst for propylene production via 1-butene metathesis. Korean Journal of Chemical Engineering, 2016, 33, 2842-2848.	2.7	3
302	Dependence of Hydrogen Pressure on the Permeation Rate through Composite Palladium Membranes Journal of Chemical Engineering of Japan, 2000, 33, 330-333.	0.6	3
303	Catalyst Regenerator for Partial Oxidation of Benzene in Reaction-extraction System. Journal of the Japan Petroleum Institute, 2008, 51, 114-117.	0.6	3
304	Synthesis of Au/C Catalysts by Ultrasonic-Assisted Technique for Vinyl Chloride Monomer Production. Engineering Journal, 2014, 18, 65-72.	1.0	3
305	Pyrolysis Kinetic Analysis of Biomasses: Sugarcane Residue, Corn Cob, Napier Grass and their Mixture. Engineering Journal, 2020, 24, 19-31.	1.0	3

306 Overview of biorefinery. , 2022, , 3-32.

#	Article	IF	CITATIONS
307	Bioresources and biofuels—From classical to perspectives and trends. , 2022, , 165-220.		3
308	Development of CoMo-X catalysts for production of H2 and CNTs from biogas by integrative process. Journal of Environmental Chemical Engineering, 2022, 10, 107901.	6.7	3
309	Performance of commercial and modified activated carbons for hydrogen sulfide removal from simulated biogas. , 2011, , .		2
310	Partial oxidation of benzene catalyzed by vanadium chloride in novel reaction–extraction–regeneration system. Chemical Engineering and Processing: Process Intensification, 2011, 50, 53-58.	3.6	2
311	Investigation of Biogas Decomposition Process for Fuel Cell Applications (PEMFC and SOFC): Thermodynamic Approach. Journal of Chemical Engineering of Japan, 2016, 49, 728-733.	0.6	2
312	Special Issue on "Hydrogen Production Technologies― Processes, 2020, 8, 1268.	2.8	2
313	Catalyst pellet design of WO3/Si-Al and hydrotalcite binder for propylene self-metathesis. Catalysis Today, 2020, 358, 74-89.	4.4	2
314	Differential Gene Expression Analysis of Aspergillus terreus Reveals Metabolic Response and Transcription Suppression under Dissolved Oxygen and pH Stress. Journal of Evolutionary Biochemistry and Physiology, 2020, 56, 577-586.	0.6	2
315	Patent Review on "Biodiesel Production Process". Recent Patents on Chemical Engineering, 2011, 4, 265-279.	0.5	2
316	Performance Assessment of SOFC Systems Integrated with Bio-Ethanol Production and Purification Processes. Engineering Journal, 2010, 14, 1-14.	1.0	2
317	Performance of Membrane-Assisted Solid Oxide Fuel Cell System Fuelled By Bioethanol. Engineering Journal, 2011, 15, 53-66.	1.0	2
318	Two-Dimensional Modeling of the Oxidative Coupling of Methane in a Fixed Bed Reactor: A Comparison among Different Catalysts. Engineering Journal, 2017, 21, 77-99.	1.0	2
319	Upgrading palm biodiesel properties via catalystâ€free partial hydrogenation using needleâ€plate dielectric barrier discharge plasma torch. International Journal of Energy Research, 2022, 46, 11756-11777.	4.5	2
320	Effect of CoMo metal loading on H2 and CNTs production from biogas by integrative process. International Journal of Hydrogen Energy, 2022, 47, 41444-41460.	7.1	2
321	Reduction of bubble coalescence by louver baffles in fluidized bed gasifier. Energy Reports, 2022, 8, 96-106.	5.1	2
322	Temperature program adsorption of hydrogen sulfide by NaOH-impregnated activated carbons for hot fuel gas purification. , 2011, , .		1
323	High Faradaic Yields of Non-Faradaic Electrochemical Modification of Catalytic Activity of Propane Oxidation at Pt-YSZ. Journal of the Electrochemical Society, 2016, 163, E341-E343.	2.9	1
324	Purification and Upgrading from Biogas to Biomethane. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2018, 97, 176-179.	0.2	1

#	Article	IF	CITATIONS
325	Development of sustainable integrated biorefinery networks in pulp and paper industries. Computer Aided Chemical Engineering, 2021, 50, 1517-1522.	0.5	1
326	A modified approach for high-quality RNA extraction of spore-forming Bacillus subtilis at varied physiological stages. Molecular Biology Reports, 2021, 48, 6757-6768.	2.3	1
327	Characterization of single-phase flow hydrodynamics in a Berty reactor using computational fluid dynamics (CFD). Reaction Chemistry and Engineering, 0, , .	3.7	1
328	Modelling endothermic reactions in a compound membrane reactor. Separation and Purification Technology, 1996, 10, 47-52.	0.3	0
329	Optimization of Electrolytic Plants for Deuterium Production: Steady-State Analysis. Nuclear Technology, 1997, 120, 149-157.	1.2	0
330	Theoretical analysis ofa multi-stage membrane reactor for oxidative coupling of methane. Computer Aided Chemical Engineering, 2012, , 445-449.	0.5	0
331	CO ₂ Absorption in a 5M Aqueous Solution of 2-(Diethylamino)Ethanol. Applied Mechanics and Materials, 0, 660, 381-385.	0.2	0
332	Integration of Ethanol Processor and CO2 Absorption to Produce Hydrogen for Fuel Cell. Energy Procedia, 2014, 61, 2215-2218.	1.8	0
333	Evaluation of Dimethyl Carbonate and Ethylene Glycol Production from Biomass. Computer Aided Chemical Engineering, 2015, 37, 1295-1300.	0.5	0
334	Effect of calcium precursors on pelletized property and cyclic CO2 capture performance. MATEC Web of Conferences, 2018, 192, 03057.	0.2	0
335	Reactivity of Au/La1-xSrxCr1-yNiyO3-Î′ toward Oxidative Coupling of Methane for C2 and C3 Hydrocarbons Production. Engineering Journal, 2014, 18, 1-12.	1.0	0
336	System Efficiency Analysis of SOFC Coupling with Air, Mixed Air-Steam and Steam Gasification Fueled by Thailand Rice Husk. Engineering Journal, 2017, 21, 95-110.	1.0	0
337	Structure development of Thailand's kaolin by mechanochemical technique. AIP Conference Proceedings, 2020, , .	0.4	0
338	Intensified processes of steam reforming and their materials for hydrogen production. , 2020, , 117-142.		0
339	Complete design case study for pulp and paper industry. , 2022, , 641-681.		Ο