
BrÃ-gida FernÃ;ndez de SimÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3703373/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aerial and underground organs display specific metabolic strategies to cope with water stress under rising atmospheric <scp>CO₂</scp> in <scp><i>Fagus sylvatica</i></scp> L Physiologia Plantarum, 2022, 174, e13711.	5.2	3
2	Scion-rootstock interaction and drought systemic effect modulate the organ-specific terpene profiles in grafted Pinus pinaster Ait. Environmental and Experimental Botany, 2021, 186, 104437.	4.2	5
3	Specific leaf metabolic changes that underlie adjustment of osmotic potential in response to drought by four <i>Quercus</i> species. Tree Physiology, 2021, 41, 728-743.	3.1	16
4	Leaf ecophysiological and metabolic response in Quercus pyrenaica Willd seedlings to moderate drought under enriched CO2 atmosphere. Journal of Plant Physiology, 2020, 244, 153083.	3.5	13
5	Rising [CO2] effect on leaf drought-induced metabolome in Pinus pinaster Aiton: Ontogenetic- and genotypic-specific response exhibit different metabolic strategies. Plant Physiology and Biochemistry, 2020, 149, 201-216.	5.8	12
6	Phenolic and volatile compounds in <i>Quercus humboldtii</i> Bonpl. wood: effect of toasting with respect to oaks traditionally used in cooperage. Journal of the Science of Food and Agriculture, 2019, 99, 315-324.	3.5	6
7	Ecophysiological and metabolic response patterns to drought under controlled condition in open-pollinated maternal families from a Fagus sylvatica L. population. Environmental and Experimental Botany, 2018, 150, 209-221.	4.2	20
8	Metabolic response to elevated CO2 levels in Pinus pinaster Aiton needles in an ontogenetic and genotypic-dependent way. Plant Physiology and Biochemistry, 2018, 132, 202-212.	5.8	13
9	Fagus sylvatica L. provenances maintain different leaf metabolic profiles and functional response. Acta Oecologica, 2017, 82, 1-9.	1.1	14
10	Leaf metabolic response to water deficit in Pinus pinaster Ait. relies upon ontogeny and genotype. Environmental and Experimental Botany, 2017, 140, 41-55.	4.2	39
11	Quercus humboldtii(Colombian oak): Characterisation of wood phenolic composition with respect to traditional oak wood used in oenology. Ciencia E Tecnica Vitivinicola, 2017, 32, 93-101.	0.9	12
12	Organ-specific metabolic responses to drought in Pinus pinaster Ait Plant Physiology and Biochemistry, 2016, 102, 17-26.	5.8	47
13	Nonâ€ŧargeted Metabolomic Profile of <i>Fagus Sylvatica</i> L. Leaves using Liquid Chromatography with Mass Spectrometry. Phytochemical Analysis, 2015, 26, 171-182.	2.4	47
14	Wood impregnation of yeast lees for winemaking. Food Chemistry, 2015, 171, 212-223.	8.2	7
15	Nontargeted GC–MS approach for volatile profile of toasting in cherry, chestnut, false acacia, and ash wood. Journal of Mass Spectrometry, 2014, 49, 353-370.	1.6	14
16	Polyphenolic compounds as chemical markers of wine ageing in contact with cherry, chestnut, false acacia, ash and oak wood. Food Chemistry, 2014, 143, 66-76.	8.2	53
17	Volatile compounds and sensorial characterisation of red wine aged in cherry, chestnut, false acacia, ash and oak wood barrels. Food Chemistry, 2014, 147, 346-356.	8.2	68
18	Seasonal variations of lipophilic compounds in needles of two chemotypes of Pinus pinaster Ait Plant Systematics and Evolution, 2014, 300, 359-367.	0.9	9

#	Article	IF	CITATIONS
19	Characterization by gas chromatography–olfactometry of the most odor-active compounds in extracts prepared from acacia, chestnut, cherry, ash and oak woods. LWT - Food Science and Technology, 2013, 53, 240-248.	5.2	58
20	The uniqueness of conifers. , 2013, , 67-96.		3
21	Phenolic compounds and sensorial characterization of wines aged with alternative to barrel products made of Spanish oak wood (<i>Quercus pyrenaica</i> Willd.). Food Science and Technology International, 2012, 18, 151-165.	2.2	35
22	Polyphenolic profile as a useful tool to identify the wood used in wine aging. Analytica Chimica Acta, 2012, 732, 33-45.	5.4	45
23	Polyphenols in red wine aged in acacia (Robinia pseudoacacia) and oak (Quercus petraea) wood barrels. Analytica Chimica Acta, 2012, 732, 83-90.	5.4	42
24	LCâ€DAD/ESIâ€MS/MS study of phenolic compounds in ash (<i>Fraxinus excelsior</i> L. and <i>F.) Tj ETQq0 0 0 2012, 47, 905-918.</i>	rgBT /Ove 1.6	rlock 10 Tf 50 88
25	Characterization of two chemotypes of Pinus pinaster by their terpene and acid patterns in needles. Plant Systematics and Evolution, 2012, 298, 511-522.	0.9	23
26	Effect of Toasting Intensity at Cooperage on Phenolic Compounds in Acacia (<i>Robinia) Tj ETQq0 0 0 rgBT /Ove</i>	rlock 10 Ti 5.2	50,462 Td (
27	Phenolic Compounds in Chestnut (<i>Castanea sativa</i> Mill.) Heartwood. Effect of Toasting at Cooperage. Journal of Agricultural and Food Chemistry, 2010, 58, 9631-9640.	5.2	103
28	Micro-oxygenation strategy depends on origin and size of oak chips or staves during accelerated red wine aging. Analytica Chimica Acta, 2010, 660, 92-101.	5.4	42
29	Characterization of Volatile Constituents in Commercial Oak Wood Chips. Journal of Agricultural and Food Chemistry, 2010, 58, 9587-9596.	5.2	42
30	Effect of size, seasoning and toasting in the volatile compounds in toasted oak wood and in a red wine treated with them. Analytica Chimica Acta, 2010, 660, 211-220.	5.4	88
31	Phenolic Compounds in Cherry (Prunus avium) Heartwood with a View to Their Use in Cooperage. Journal of Agricultural and Food Chemistry, 2010, 58, 4907-4914.	5.2	57
32	Chemical and chromatic characteristics of Tempranillo, Cabernet Sauvignon and Merlot wines from DO Navarra aged in Spanish and French oak barrels. Food Chemistry, 2009, 115, 639-649.	8.2	54
33	Volatile Compounds in Acacia, Chestnut, Cherry, Ash, and Oak Woods, with a View to Their Use in Cooperage. Journal of Agricultural and Food Chemistry, 2009, 57, 3217-3227.	5.2	101
34	Volatile Compounds and Sensorial Characterization of Wines from Four Spanish Denominations of Origin, Aged in Spanish Rebollo (<i>Quercus pyrenaica</i> Willd.) Oak Wood Barrels. Journal of Agricultural and Food Chemistry, 2008, 56, 9046-9055.	5.2	58
35	Effect of the Seasoning Method on the Chemical Composition of Oak Heartwood to Cooperage. Journal of Agricultural and Food Chemistry, 2008, 56, 3089-3096.	5.2	21
36	Influence of wood origin in the polyphenolic composition of a Spanish red wine aging in bottle, after storage in barrels of Spanish, French and American oak wood. European Food Research and Technology, 2007, 224, 695-705.	3.3	35

BrÃgida FernÃindez de SimÃ³

#	Article	IF	CITATIONS
37	Chemical Characterization of Oak Heartwood from Spanish Forests ofQuercus pyrenaica(Wild.). Ellagitannins, Low Molecular Weight Phenolic, and Volatile Compounds. Journal of Agricultural and Food Chemistry, 2006, 54, 8314-8321.	5.2	59
38	Evolution of oak-related volatile compounds in a Spanish red wine during 2 years bottled, after aging in barrels made of Spanish, French and American oak wood. Analytica Chimica Acta, 2006, 563, 198-203.	5.4	27
39	Differentiation among five Spanish Pinus pinaster provenances based on its oleoresin terpenic composition. Biochemical Systematics and Ecology, 2005, 33, 1007-1016.	1.3	41
40	Phenolic compounds in a Spanish red wine aged in barrels made of Spanish, French and American oak wood. European Food Research and Technology, 2003, 216, 150-156.	3.3	65
41	Volatile Compounds in Spanish, French, and American Oak Woods after Natural Seasoning and Toasting. Journal of Agricultural and Food Chemistry, 2003, 51, 5923-5932.	5.2	119
42	Volatile Compounds in a Spanish Red Wine Aged in Barrels Made of Spanish, French, and American Oak Wood. Journal of Agricultural and Food Chemistry, 2003, 51, 7671-7678.	5.2	100
43	Pinus pinaster Oleoresin in Plus Trees. Holzforschung, 2002, 56, 261-266.	1.9	19
44	Changes in Low Molecular Weight Phenolic Compounds in Spanish, French, and American Oak Woods during Natural Seasoning and Toasting. Journal of Agricultural and Food Chemistry, 2001, 49, 1790-1798.	5.2	111
45	Evolution of Ellagitannins in Spanish, French, and American Oak Woods during Natural Seasoning and Toasting. Journal of Agricultural and Food Chemistry, 2001, 49, 3677-3684.	5.2	85
46	Polyphenols susceptible to migrate from cork stoppers to wine. European Food Research and Technology, 2001, 213, 56-61.	3.3	31
47	Presence of cork-taint responsible compounds in wines and their cork stoppers. European Food Research and Technology, 2000, 211, 257-261.	3.3	79
48	Ellagitannins in Woods of Spanish, French and American Oaks. Holzforschung, 1999, 53, 147-150.	1.9	32
49	Evolution of Phenolic Compounds of Spanish Oak Wood during Natural Seasoning. First Results. Journal of Agricultural and Food Chemistry, 1999, 47, 1687-1694.	5.2	54
50	Changes in Tannic Composition of Reproduction CorkQuercus suberthroughout Industrial Processing. Journal of Agricultural and Food Chemistry, 1998, 46, 2332-2336.	5.2	36
51	Polyphenolic Composition ofQuercus suberCork from Different Spanish Provenances. Journal of Agricultural and Food Chemistry, 1998, 46, 3166-3171.	5.2	56
52	Tannin Composition of <i>Eucalyptus camaldulensis, E. globulus</i> and <i>E. rudis.</i> Part II. Bark. Holzforschung, 1997, 51, 125-129.	1.9	31
53	Suberin Composition of Reproduction Cork from <i>Quercus suber</i> . Holzforschung, 1997, 51, 219-224.	1.9	33
54	Tannin Composition of <i>Eucalyptus camaldulensis, E. globulus</i> and <i>E. rudis.</i> Part I. Wood. Holzforschung, 1997, 51, 119-124.	1.9	27

BrÃgida FernÃindez de SimÃ³

#	Article	IF	CITATIONS
55	Low Molecular Weight Polyphenols in Cork ofQuercus suber. Journal of Agricultural and Food Chemistry, 1997, 45, 2695-2700.	5.2	68
56	High Pressure Liquid Chromatographic Analysis of Polyphenols in Leaves ofEucalyptus camaldulensis, E. globulus andE. rudis: Proanthocyanidins, Ellagitannins and Flavonol Glycosides. Phytochemical Analysis, 1997, 8, 78-83.	2.4	44
57	Low Molecular Weight Phenolic Compounds in Spanish Oak Woods. Journal of Agricultural and Food Chemistry, 1996, 44, 1507-1511.	5.2	103
58	Gel permeation chromatographic study of the molecular weight distribution of tannins in the wood, bark and leaves ofEucalyptus spp Chromatographia, 1996, 42, 95-100.	1.3	27
59	Flavonoid separation by capillary electrophoresis. Effect of temperature and pH. Chromatographia, 1995, 41, 389-392.	1.3	20
60	Flavonoid separation by capillary electrophoresis. Effect of temperature and pH. Chromatographia, 1995, 41, 389-392.	1.3	19
61	Polyphenolic Composition of Wood Extracts from <i>Eucalyptus camaldulensis, E. globulus </i> and <i>E. rudis</i> . Holzforschung, 1995, 49, 411-417.	1.9	26
62	Phenolic composition of white grapes (Var. Airen). Changes during ripening. Food Chemistry, 1993, 47, 47-52.	8.2	24
63	Importance of phenolic compounds for the characterization of fruit juices. Journal of Agricultural and Food Chemistry, 1992, 40, 1531-1535.	5.2	183
64	HPLC study of the efficiency of extraction of phenolic compounds. Chromatographia, 1990, 30, 35-37.	1.3	51