
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3703057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT	/Overlock 10	Tf 50742
2	Compartmentalization of ceramide signaling: physical foundations and biological effects. Journal of Cellular Physiology, 2000, 184, 285-300.	4.1	423
3	Sphingomyelinases: enzymology and membrane activity. FEBS Letters, 2002, 531, 38-46.	2.8	312
4	Intrinsic protein-lipid interactions. Journal of Molecular Biology, 1982, 157, 597-618.	4.2	268
5	Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1902-1921.	2.6	245
6	Transbilayer (<i>flipâ€flop</i>) lipid motion and lipid scrambling in membranes. FEBS Letters, 2010, 584, 1779-1786.	2.8	224
7	Ceramides in Phospholipid Membranes: Effects on Bilayer Stability and Transition to Nonlamellar Phases. Biophysical Journal, 1999, 76, 342-350.	0.5	223
8	Structure and functional properties of diacylglycerols in membranes1This work is dedicated to Professor Vittorio Luzzati on occasion of his 75th birthday.1. Progress in Lipid Research, 1999, 38, 1-48.	11.6	222
9	Giant Unilamellar Vesicles Electroformed from Native Membranes and Organic Lipid Mixtures under Physiological Conditions. Biophysical Journal, 2007, 93, 3548-3554.	0.5	208
10	Phase diagrams of lipid mixtures relevant to the study of membrane rafts. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 665-684.	2.4	186
11	Effects of ceramide and other simple sphingolipids on membrane lateral structure. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 169-177.	2.6	180
12	Interaction of Cholesterol with Sphingomyelin in Mixed Membranes Containing Phosphatidylcholine, Studied by Spin-Label ESR and IR Spectroscopies. A Possible Stabilization of Gel-Phase Sphingolipid Domains by Cholesterol. Biochemistry, 2001, 40, 2614-2622.	2.5	146
13	Liposome fusion catalytically induced by phospholipase C. Biochemistry, 1989, 28, 7364-7367.	2.5	144
14	Different Effects of Enzyme-generated Ceramides and Diacylglycerols in Phospholipid Membrane Fusion and Leakage. Journal of Biological Chemistry, 1996, 271, 26616-26621.	3.4	143
15	Detergent-Resistant, Ceramide-Enriched Domains in Sphingomyelin/Ceramide Bilayers. Biophysical Journal, 2006, 90, 903-914.	0.5	141
16	Membrane Restructuring via Ceramide Results in Enhanced Solute Efflux. Journal of Biological Chemistry, 2002, 277, 11788-11794.	3.4	134
17	Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy, 2016, 12, 2213-2229.	9.1	118
18	Surfactant-induced release of liposomal contents. A survey of methods and results. Biochimica Et Biophysica Acta - Biomembranes, 1988, 937, 127-134.	2.6	117

#	Article	IF	CITATIONS
19	Detergent solubilization of lipid bilayers: a balance of driving forces. Trends in Biochemical Sciences, 2013, 38, 85-93.	7.5	116
20	Sphingomyelinase Activity Causes Transbilayer Lipid Translocation in Model and Cell Membranes. Journal of Biological Chemistry, 2003, 278, 37169-37174.	3.4	107
21	The Physical Properties of Ceramides in Membranes. Annual Review of Biophysics, 2018, 47, 633-654.	10.0	107
22	Different Effects of Long- and Short-Chain Ceramides on the Gel-Fluid and Lamellar-Hexagonal Transitions of Phospholipids: A Calorimetric, NMR, and X-Ray Diffraction Study. Biophysical Journal, 2005, 88, 3368-3380.	0.5	102
23	Morphological changes induced by phospholipase C and by sphingomyelinase on large unilamellar vesicles: a cryo-transmission electron microscopy study of liposome fusion. Biophysical Journal, 1997, 72, 2630-2637.	0.5	100
24	Asymmetric Addition of Ceramides but not Dihydroceramides Promotes Transbilayer (Flip-Flop) Lipid Motion in Membranes. Biophysical Journal, 2005, 88, 348-359.	0.5	100
25	The interaction of phosphatidylcholine bilayers with Triton X-100. FEBS Journal, 1986, 160, 659-665.	0.2	99
26	Cholesterol displacement by ceramide in sphingomyelinâ€containing liquidâ€ordered domains, and generation of gel regions in giant lipidic vesicles. FEBS Letters, 2008, 582, 3230-3236.	2.8	96
27	Cholesterol interactions with ceramide and sphingomyelin. Chemistry and Physics of Lipids, 2016, 199, 26-34.	3.2	92
28	Detergent solubilization of phospholipid vesicle. Effect of electric charge. Biochemical Journal, 1990, 270, 305-308.	3.7	91
29	Topological properties of two cubic phases of a phospholipid : cholesterol: diacylglycerol aqueous system and their possible implications in the phospholipase C-induced liposome fusion. FEBS Letters, 1995, 368, 143-147.	2.8	88
30	Detergent solubilisation of phospholipid bilayers in the gel state: the role of polar and hydrophobic forces. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1373, 112-118.	2.6	88
31	Domain Formation in Sphingomyelin/Cholesterol Mixed Membranes Studied by Spin-Label Electron Spin Resonance Spectroscopyâ€. Biochemistry, 2005, 44, 4911-4918.	2.5	81
32	Solubilization of Phospholipid Bilayers by Surfactants Belonging to the Triton X Series: Effect of Polar Group Size. Journal of Colloid and Interface Science, 1996, 178, 156-159.	9.4	80
33	Vesicle Membrane Fusion Induced by the Concerted Activities of Sphingomyelinase and Phospholipase C. Journal of Biological Chemistry, 1998, 273, 22977-22982.	3.4	80
34	Lysis and reassembly of sonicated lecithin vesicles in the presence of triton X-100. FEBS Letters, 1981, 123, 200-204.	2.8	79
35	Molecular associations and surface-active properties of short- and long-N-acyl chain ceramides. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1711, 12-19.	2.6	79
36	Diacylglycerol and the promotion of lamellar-hexagonal and lamellar-isotropic phase transitions in lipids: implications for membrane fusion. Biophysical Journal, 1996, 70, 2299-2306.	0.5	78

#	Article	IF	CITATIONS
37	Dihydrosphingomyelin Impairs HIV-1 Infection by Rigidifying Liquid-Ordered Membrane Domains. Chemistry and Biology, 2010, 17, 766-775.	6.0	76
38	Origin of the Lag Period in the Phospholipase C Cleavage of Phospholipids in Membranes. Concomitant Vesicle Aggregation and Enzyme Activationâ€. Biochemistry, 1996, 35, 15183-15187.	2.5	74
39	Spectroscopic techniques in the study of membrane solubilization, reconstitution and permeabilization by detergents. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1508, 51-68.	2.6	74
40	Triton X-100-Resistant Bilayers:Â Effect of Lipid Composition and Relevance to the Raft Phenomenon. Langmuir, 2002, 18, 2828-2835.	3.5	74
41	Increase in size of sonicated phospholipid vesicles in the presence of detergents. Journal of Membrane Biology, 1982, 67, 55-62.	2.1	67
42	Human Atg8-cardiolipin interactions in mitophagy: Specific properties of LC3B, GABARAPL2 and GABARAP. Autophagy, 2016, 12, 2386-2403.	9.1	67
43	Sphingosine Increases the Permeability of Model and Cell Membranes. Biophysical Journal, 2006, 90, 4085-4092.	0.5	65
44	Effect of Single Chain Lipids on Phospholipase C-Promoted Vesicle Fusion. A Test for the Stalk Hypothesis of Membrane Fusion. Biochemistry, 1998, 37, 3901-3908.	2.5	62
45	Detergent Effects on Membranes at Subsolubilizing Concentrations: Transmembrane Lipid Motion, Bilayer Permeabilization, and Vesicle Lysis/Reassembly Are Independent Phenomena. Langmuir, 2010, 26, 7307-7313.	3.5	61
46	Sphingomyelinase cleavage of sphingomyelin in pure and mixed lipid membranes. Influence of the physical state of the sphingolipid. Chemistry and Physics of Lipids, 2002, 114, 11-20.	3.2	60
47	Liposomes Containing Sphingomyelin and Cholesterol: Detergent Solubilisation and Infrared Spectroscopic Studies. Journal of Liposome Research, 1999, 9, 247-260.	3.3	59
48	Coexistence of Immiscible Mixtures of Palmitoylsphingomyelin and Palmitoylceramide in Monolayers and Bilayers. Biophysical Journal, 2009, 97, 2717-2726.	0.5	59
49	Membrane Fusion Induced by Phospholipase C and Sphingomyelinases. Bioscience Reports, 2000, 20, 443-463.	2.4	58
50	The physical properties and photopolymerization of diacetylene-containing phospholipid liposomes. Biochimica Et Biophysica Acta - Biomembranes, 1983, 732, 210-218.	2.6	57
51	Leaky Vesicle Fusion Induced by Phosphatidylinositol-Specific Phospholipase C:Â Observation of Mixing of Vesicular Inner Monolayersâ€. Biochemistry, 2000, 39, 14012-14018.	2.5	56
52	Modulation of PI-Specific Phospholipase C by Membrane Curvature and Molecular Order. Biochemistry, 2005, 44, 11592-11600.	2.5	56
53	Lipid bilayers containing sphingomyelins and ceramides of varying N-acyl lengths: A glimpse into sphingolipid complexity. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 456-464.	2.6	56
54	Palmitoylcarnitine, a surface-active metabolite. FEBS Letters, 1996, 390, 1-5.	2.8	55

#	Article	IF	CITATIONS
55	Ceramide-Enriched Membrane Domains in Red Blood Cells and the Mechanism of Sphingomyelinase-Induced Hotâ^'Cold Hemolysis. Biochemistry, 2008, 47, 11222-11230.	2.5	55
56	Phospholipases C and sphingomyelinases: Lipids as substrates and modulators of enzyme activity. Progress in Lipid Research, 2012, 51, 238-266.	11.6	55
57	Phospholipase C-promoted membrane fusion. Retroinhibition by the end-product diacylglycerol. Biochemistry, 1993, 32, 1054-1058.	2.5	54
58	Lipid Geometry and Bilayer Curvature Modulate LC3/GABARAP-Mediated Model Autophagosomal Elongation. Biophysical Journal, 2016, 110, 411-422.	0.5	54
59	Lipids Favoring Inverted Phase Enhance the Ability of Aerolysin To Permeabilize Liposome Bilayersâ€. Biochemistry, 2000, 39, 14019-14024.	2.5	53
60	Biophysics (and sociology) of ceramides Biochemical Society Symposia, 2005, 72, 177-188.	2.7	51
61	Endomembrane PtdIns(3,4,5)P3 activates the PI3K/Akt pathway. Journal of Cell Science, 2015, 128, 3456-65.	2.0	50
62	Kinetic studies on the interaction of phosphatidylcholine liposomes with Triton X-100. Biochimica Et Biophysica Acta - Biomembranes, 1987, 902, 237-246.	2.6	48
63	Detergent-like properties of polyethyleneglycols in relation to model membranes. FEBS Letters, 1982, 137, 323-326.	2.8	47
64	On the interaction of ubiquinones with phospholipid bilayers. FEBS Letters, 1981, 132, 19-22.	2.8	46
65	Triton X-100 Partitioning into Sphingomyelin Bilayers at Subsolubilizing Detergent Concentrations: Effect of Lipid Phase and a Comparison with Dipalmitoylphosphatidylcholine. Biophysical Journal, 2007, 93, 3504-3514.	0.5	46
66	Solid lipid nanoparticles for delivery of Calendula officinalis extract. Colloids and Surfaces B: Biointerfaces, 2015, 135, 18-26.	5.0	46
67	The Membrane-Perturbing Properties of Palmitoyl-Coenzyme A and Palmitoylcarnitine. A Comparative Study. Biochemistry, 1995, 34, 10400-10405.	2.5	45
68	Dual Inhibitory Effect of Gangliosides on Phospholipase C-Promoted Fusion of Lipidic Vesiclesâ€. Biochemistry, 1996, 35, 7506-7513.	2.5	44
69	Biophysical properties of sphingosine, ceramides and other simple sphingolipids. Biochemical Society Transactions, 2014, 42, 1401-1408.	3.4	44
70	Sec14-nodulin proteins and the patterning of phosphoinositide landmarks for developmental control of membrane morphogenesis. Molecular Biology of the Cell, 2015, 26, 1764-1781.	2.1	44
71	Biophysical Properties of Novel 1-Deoxy-(Dihydro)ceramides Occurring in Mammalian Cells. Biophysical Journal, 2014, 107, 2850-2859.	0.5	42
72	Membrane Organization and Ionization Behavior of the Minor but Crucial Lipid Ceramide-1-Phosphate. Biophysical Journal, 2008, 94, 4320-4330.	0.5	41

#	Article	IF	CITATIONS
73	Cholesterol Displaces Palmitoylceramide from Its Tight Packing with Palmitoylsphingomyelin in the Absence of a Liquid-Disordered Phase. Biophysical Journal, 2010, 99, 1119-1128.	0.5	41
74	Lamellar Gel (Lβ) Phases of Ternary Lipid Composition Containing Ceramide and Cholesterol. Biophysical Journal, 2014, 106, 621-630.	0.5	41
75	Partial dehydration of phosphatidylethanolamine phosphate groups during hexagonal phase formation, as seen by i.r. spectroscopy. Biochemical Journal, 1992, 282, 467-470.	3.7	40
76	Protein-lipid interactions and differential scanning calorimetric studies of bacteriorhodopsin reconstituted lipid-water systems. Biochimica Et Biophysica Acta - Biomembranes, 1982, 689, 283-289.	2.6	39
77	An assessment of the biochemical applications of the non-ionic surfactant Hecameg. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1193, 301-306.	2.6	38
78	Human ATG3 binding to lipid bilayers: role of lipid geometry, and electric charge. Scientific Reports, 2017, 7, 15614.	3.3	36
79	Structural changes induced by Triton X-100 on sonicated phosphatidylcholine liposomes. FEBS Journal, 1988, 173, 585-588.	0.2	35
80	Cholesterol modulation of sphingomyelinase activity at physiological temperatures. Chemistry and Physics of Lipids, 2004, 130, 127-134.	3.2	35
81	Differential penetration of fatty acyl-coenzyme A and fatty acylcarnitines into phospholipid monolayers. FEBS Letters, 1995, 357, 75-78.	2.8	34
82	Membrane Fusion Induced by the Catalytic Activity of a Phospholipase C/Sphingomyelinase fromListeria monocytogenesâ€. Biochemistry, 2004, 43, 3688-3695.	2.5	34
83	Detergent solubilization of phosphatidylcholine bilayers in the fluid state: Influence of the acyl chain structure. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 190-196.	2.6	34
84	Atomic Force Microscopy Characterization of Palmitoylceramide and Cholesterol Effects on Phospholipid Bilayers: A Topographic and Nanomechanical Study. Langmuir, 2015, 31, 3135-3145.	3.5	34
85	Poly(ethylene glycol)-lipid conjugates inhibit phospholipase C-induced lipid hydrolysis, liposome aggregation and fusion through independent mechanisms. FEBS Letters, 1997, 411, 281-286.	2.8	33
86	Mixed Membranes of Sphingolipids and Glycerolipids As Studied by Spin-Label ESR Spectroscopy. A Search for Domain Formation. Biochemistry, 2000, 39, 9876-9883.	2.5	33
87	Inhibition by Gangliosides of Bacillus cereus Phospholipase C Activity Against Monolayers, Micelles and Bilayer Vesicles. FEBS Journal, 1996, 239, 105-110.	0.2	32
88	Diacylglycerol effects on phosphatidylinositol-specific phospholipase C activity and vesicle fusion. FEBS Letters, 2001, 494, 117-120.	2.8	32
89	Combination of the anti-tumour cell ether lipid edelfosine with sterols abolishes haemolytic side effects of the drug. Journal of Chemical Biology, 2008, 1, 89-94.	2.2	32
90	Phospholipase C Hydrolysis of Phospholipids in Bilayers of Mixed Lipid Compositionsâ€. Biochemistry, 1998, 37, 11621-11628.	2.5	31

#	Article	IF	CITATIONS
91	Sphingosine-1-Phosphate as an Amphipathic Metabolite: Its Properties in Aqueous and Membrane Environments. Biophysical Journal, 2009, 97, 1398-1407.	0.5	30
92	Equilibrium and Kinetic Studies of the Solubilization of Phospholipidâ^'Cholesterol Bilayers by C12E8. The Influence of the Lipid Phase Structure. Langmuir, 2000, 16, 1960-1968.	3.5	29
93	Accumulated Bending Energy Elicits Neutral Sphingomyelinase Activity inÂHuman Red Blood Cells. Biophysical Journal, 2012, 102, 2077-2085.	0.5	29
94	Lipid Bilayers in the Gel Phase Become Saturated by Triton X-100 at Lower Surfactant Concentrations Than Those in the Fluid Phase. Biophysical Journal, 2012, 102, 2510-2516.	0.5	29
95	The effect of bilayer order and fluidity on detergent-induced liposome fusion. FEBS Letters, 1985, 179, 311-315.	2.8	28
96	Surface-active properties of the antitumour ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (edelfosine). Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1855-1860.	2.6	28
97	Phospholipase-C-promoted liposome fusion. Biochemical Society Transactions, 1994, 22, 839-844.	3.4	26
98	The fatty acids of sphingomyelins and ceramides in mammalian tissues and cultured cells: Biophysical and physiological implications. Chemistry and Physics of Lipids, 2018, 217, 29-34.	3.2	26
99	Pb(II) Induces Scramblase Activation and Ceramide-Domain Generation in Red Blood Cells. Scientific Reports, 2018, 8, 7456.	3.3	26
100	Effect of detergents and fusogenic lipids on phospholipid phase transitions. Journal of Membrane Biology, 1983, 71, 183-187.	2.1	25
101	Unexpected wide substrate specificity of C. perfringens α-toxin phospholipase C. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2618-2627.	2.6	25
102	Electroformation of Giant Unilamellar Vesicles from Native Membranes and Organic Lipid Mixtures for the Study of Lipid Domains under Physiological Ionic-Strength Conditions. Methods in Molecular Biology, 2010, 606, 105-114.	0.9	25
103	Implication of ceramide, ceramide 1-phosphate and sphingosine 1-phosphate in tumorigenesis. Translational Oncogenomics, 2008, 3, 81-98.	1.7	25
104	LC3 subfamily in cardiolipin-mediated mitophagy: a comparison of the LC3A, LC3B and LC3C homologs. Autophagy, 2022, 18, 2985-3003.	9.1	25
105	Leakage-free membrane fusion induced by the hydrolytic activity of PlcHR2, a novel phospholipase C/sphingomyelinase from Pseudomonas aeruginosa. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2365-2372.	2.6	24
106	Phospholipase C and sphingomyelinase activities of the Clostridium perfringens α-toxin. Chemistry and Physics of Lipids, 2009, 159, 51-57.	3.2	24
107	A Cholesterol Recognition Motif in Human Phospholipid Scramblase 1. Biophysical Journal, 2014, 107, 1383-1392.	0.5	24
108	Does Ceramide Form Channels? The Ceramide-Induced Membrane Permeabilization Mechanism. Biophysical Journal, 2017, 113, 860-868.	0.5	24

#	Article	IF	CITATIONS
109	The biosynthetic incorporation of diacetylenic fatty acids into the biomembranes of Acholeplasma laidlawii a cells and polymerisation of the biomembranes by irradiation with ultraviolet light. Biochimica Et Biophysica Acta - Biomembranes, 1983, 727, 327-335.	2.6	23
110	The influence of membrane composition on the solubilizing effects of Triton X-100. Biochimica Et Biophysica Acta - Biomembranes, 1987, 904, 337-345.	2.6	23
111	Surfactant Effects of Chlorpromazine and Imipramine on Lipid Bilayers Containing Sphingomyelin and Cholesterol. Journal of Colloid and Interface Science, 2002, 256, 284-289.	9.4	23
112	Phospholipase C activity-induced fusion of pure lipid model membranes. A freeze fracture study. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1068, 249-253.	2.6	22
113	The physical state of ubiquinone-10, in pure form and incorporated into phospholipid bilayers. A Fourier-transform infrared spectroscopic study. FEBS Journal, 1992, 204, 1125-1130.	0.2	22
114	An Infrared Investigation of Palmitoyl-Coenzyme A and Palmitoylcarnitine Interaction with Perdeuterated-Chain Phospholipid Bilayers. FEBS Journal, 1995, 231, 199-203.	0.2	22
115	End-products diacylglycerol and ceramide modulate membrane fusion induced by a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 59-64.	2.6	21
116	Membrane Permeabilization Induced by Sphingosine: Effect of Negatively Charged Lipids. Biophysical Journal, 2014, 106, 2577-2584.	0.5	21
117	Quantitation of cholesterol incorporation into extruded lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1735-1738.	2.6	20
118	Effects of bilayer composition and physical properties on the phospholipase C and sphingomyelinase activities of Clostridium perfringens α-toxin. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 279-286.	2.6	20
119	Ceramide-Induced Lamellar Gel Phases in Fluid Cell Lipid Extracts. Langmuir, 2016, 32, 9053-9063.	3.5	20
120	The interaction of detergents with phospholipid vesicles. FEBS Letters, 1982, 137, 141-145.	2.8	18
121	Liposome aggregation induced by poly(ethylene glycol). Rapid kinetic studies. Colloids and Surfaces B: Biointerfaces, 1995, 3, 263-270.	5.0	18
122	Interaction of Phospholipases C and Sphingomyelinase with Liposomes. Methods in Enzymology, 2003, 372, 3-19.	1.0	18
123	Multiple phospholipid substrates of phospholipase C/sphingomyelinase HR2 from Pseudomonas aeruginosa. Chemistry and Physics of Lipids, 2011, 164, 78-82.	3.2	18
124	Interfacial enzyme activation, non-lamellar phase formation and membrane fusion. Is there a conducting thread?. Faraday Discussions, 1999, 111, 55-68.	3.2	17
125	The Channel-forming Protein Proaerolysin Remains a Dimer at Low Concentrations in Solution. Journal of Biological Chemistry, 2001, 276, 551-554.	3.4	17
126	Cholesterol–Ceramide Interactions in Phospholipid and Sphingolipid Bilayers As Observed by Positron Annihilation Lifetime Spectroscopy and Molecular Dynamics Simulations. Langmuir, 2016, 32, 5434-5444.	3.5	17

#	Article	IF	CITATIONS
127	Complex Effects of 24:1 Sphingolipids in Membranes Containing Dioleoylphosphatidylcholine and Cholesterol. Langmuir, 2017, 33, 5545-5554.	3.5	17
128	Omega-3 polyunsaturated fatty acids do not fluidify bilayers in the liquid-crystalline state. Scientific Reports, 2018, 8, 16240.	3.3	17
129	Towards the in vitro reconstitution of caveolae. Asymmetric incorporation of glycosylphosphatidylinositol (GPI) and gangliosides into liposomal membranes. FEBS Letters, 1999, 457, 71-74.	2.8	16
130	Lipidic nanovesicles stabilize suspensions of metal oxide nanoparticles. Chemistry and Physics of Lipids, 2015, 191, 84-90.	3.2	15
131	The Critical Micellar Concentrations of Fatty Acyl Coenzyme A and Fatty Acyl Carnitines. Journal of Colloid and Interface Science, 1993, 161, 343-346.	9.4	14
132	Sphingolipids (Galactosylceramide and Sulfatide) in Lamellarâ^'Hexagonal Phospholipid Phase Transitions and in Membrane Fusionâ€. Langmuir, 2000, 16, 8958-8963.	3.5	14
133	Fast and slow biomembrane solubilizing detergents: Insights into their mechanism of action. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110430.	5.0	14
134	Homogeneous and Heterogeneous Bilayers of Ternary Lipid Compositions Containing Equimolar Ceramide and Cholesterol. Langmuir, 2019, 35, 5305-5315.	3.5	14
135	Exploring polar headgroup interactions between sphingomyelin and ceramide with infrared spectroscopy. Scientific Reports, 2020, 10, 17606.	3.3	14
136	Phospholipase cleavage of glycosylphosphatidylinositol reconstituted in liposomal membranes. FEBS Letters, 1998, 432, 150-154.	2.8	13
137	Purification and Characterization of Insulin-Mimetic Inositol Phosphoglycan-Like Molecules From Grass Pea (Lathyrus sativus) Seeds. Molecular Medicine, 2001, 7, 454-460.	4.4	13
138	Imaging the early stages of phospholipase C/sphingomyelinase activity on vesicles containing coexisting ordered-disordered and gel-fluid domains. Journal of Lipid Research, 2011, 52, 635-645.	4.2	13
139	Orientation of sickle red blood cells in an alternating electric field. Die Naturwissenschaften, 1984, 71, 158-160.	1.6	12
140	Membrane binding and insertion of the predicted transmembrane domain of human scramblase 1. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 388-397.	2.6	12
141	Ceramide increases free volume voids in DPPC membranes. RSC Advances, 2015, 5, 44282-44290.	3.6	12
142	The interaction of AÎ ² 42 peptide in monomer, oligomer or fibril forms with sphingomyelin/cholesterol/ganglioside bilayers. International Journal of Biological Macromolecules, 2021, 168, 611-619.	7.5	12
143	Ceramide-Induced Transbilayer (Flip-Flop) Lipid Movement in Membranes. Methods in Molecular Biology, 2009, 462, 1-11.	0.9	12
144	High-Melting Lipid Mixtures and the Origin of Detergent-Resistant Membranes Studied with Temperature-Solubilization Diagrams. Biophysical Journal, 2014, 107, 2828-2837.	0.5	11

#	Article	IF	CITATIONS
145	Lipid-protein interactions. The mitochondrial complex III-phosphatidylcholine-water system. Biochimica Et Biophysica Acta - Biomembranes, 1988, 942, 341-352.	2.6	10
146	Real-time measurements of chemically-induced membrane fusion in cell monolayers, using a resonance energy transfer method. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1189, 175-180.	2.6	10
147	Effect of long-chain acyl-CoAs and acylcarnitines on gel-fluid and lamellar-hexagonal phospholipid phase transitions. Molecular Membrane Biology, 1996, 13, 165-172.	2.0	10
148	Alkanes are not innocuous vehicles for hydrophobic reagents in membrane studies. Chemistry and Physics of Lipids, 2006, 139, 107-114.	3.2	10
149	Phase-selective staining of model and cell membranes, lipid droplets and lipoproteins with fluorescent solvatochromic pyrene probes. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183470.	2.6	10
150	Lipid-protein interaction. The incorporation of myelin proteolipid apoprotein into phosphatidylcholine bilayers. FEBS Journal, 1988, 174, 641-646.	0.2	9
151	The lamellar to hexagonal phase transition in phosphatidylethanolamine liposomes: A fluorescence anisotropy study. Biochemical and Biophysical Research Communications, 1990, 168, 987-992.	2.1	9
152	Sphingosine induces the aggregation of imine-containing peroxidized vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2071-2077.	2.6	9
153	End-Product Diacylglycerol Enhances the Activity of PI-PLC through Changes in Membrane Domain Structure. Biophysical Journal, 2015, 108, 1672-1682.	0.5	9
154	Lamellar Phases Composed of Phospholipid, Cholesterol, and Ceramide, as Studied by 2H NMR. Biophysical Journal, 2019, 117, 296-306.	0.5	9
155	Mixing brain cerebrosides with brain ceramides, cholesterol and phospholipids. Scientific Reports, 2019, 9, 13326.	3.3	9
156	C24:0 and C24:1 sphingolipids in cholesterol-containing, five- and six-component lipid membranes. Scientific Reports, 2020, 10, 14085.	3.3	9
157	The Binding of Aβ42 Peptide Monomers to Sphingomyelin/Cholesterol/Ganglioside Bilayers Assayed by Density Gradient Ultracentrifugation. International Journal of Molecular Sciences, 2020, 21, 1674.	4.1	9
158	In situ synthesis of fluorescent membrane lipids (ceramides) using click chemistry. Journal of Chemical Biology, 2012, 5, 119-123.	2.2	8
159	Fluorescent Polyene Ceramide Analogues as Membrane Probes. Langmuir, 2015, 31, 2484-2492.	3.5	8
160	Patches and Blebs: A Comparative Study of the Composition and Biophysical Properties of Two Plasma Membrane Preparations from CHO Cells. International Journal of Molecular Sciences, 2020, 21, 2643.	4.1	8
161	Erythrocyte Membrane Nanomechanical Rigidity Is Decreased in Obese Patients. International Journal of Molecular Sciences, 2022, 23, 1920.	4.1	8
162	Phosphorylation of glycosyl-phosphatidylinositol by phosphatidylinositol 3-kinase changes its properties as a substrate for phospholipases. FEBS Letters, 2005, 579, 59-65.	2.8	7

#	Article	IF	CITATIONS
163	Recruitment of a phospholipase C/sphingomyelinase into non-lamellar lipid droplets during hydrolysis of lipid bilayers. Chemistry and Physics of Lipids, 2013, 166, 12-17.	3.2	7
164	Histones and DNA Compete for Binding Polyphosphoinositides in Bilayers. Biophysical Journal, 2014, 106, 1092-1100.	0.5	7
165	Histones Cause Aggregation and Fusion of Lipid Vesicles Containing Phosphatidylinositol-4-Phosphate. Biophysical Journal, 2015, 108, 863-871.	0.5	7
166	Thermally-induced aggregation and fusion of protein-free lipid vesicles. Colloids and Surfaces B: Biointerfaces, 2015, 136, 545-552.	5.0	7
167	β-Amyloid (1–42) peptide adsorbs but does not insert into ganglioside-containing phospholipid membranes in the liquid-disordered state: modelling and experimental studies. International Journal of Biological Macromolecules, 2020, 164, 2651-2658.	7.5	7
168	Molecular and mesoscopic geometries in autophagosome generation. A review. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183731.	2.6	7
169	Polymerisation of diacetylenic fatty acid in cultures of Bacillus cereus. Lipids and Lipid Metabolism, 1982, 712, 292-298.	2.6	6
170	Membrane binding of human phospholipid scramblase 1 cytoplasmic domain. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1785-1792.	2.6	6
171	Clearly Detectable, Kinetically Restricted Solid–Solid Phase Transition in cis-Ceramide Monolayers. Langmuir, 2018, 34, 11749-11758.	3.5	6
172	CHO/LYâ€B cell growth under limiting sphingolipid supply: Correlation between lipid composition and biophysical properties of sphingolipidâ€restricted cell membranes. FASEB Journal, 2021, 35, e21657.	0.5	6
173	Ceramide enhances binding of LC3/GABARAP autophagy proteins to cardiolipin-containing membranes. International Journal of Biological Macromolecules, 2022, 217, 748-760.	7.5	6
174	Sublytic and lytic effects of the zwitterionic bile derivative 3-((3-Deoxycholamidopropyl)dimethylammonio)-1-propanesulfonate on phosphatidylcholine liposomes. Archives of Biochemistry and Biophysics, 1988, 262, 585-591.	3.0	5
175	The onset of Triton X-100 solubilization of sphingomyelin/ceramide bilayers: effects of temperature and composition. Chemistry and Physics of Lipids, 2013, 167-168, 57-61.	3.2	5
176	Vesicular PtdIns(3,4,5)P3 and Rab 7 are key effectors of zygote nuclear membrane fusion. Journal of Cell Science, 2016, 130, 444-452.	2.0	5
177	The interaction of lipid-liganded gold clusters (Aurora â,,¢) with lipid bilayers. Chemistry and Physics of Lipids, 2019, 218, 40-46.	3.2	5
178	Lipid Self-Assemblies under the Atomic Force Microscope. International Journal of Molecular Sciences, 2021, 22, 10085.	4.1	5
179	Calorimetric assay of gramicidin A in the presence of surfactants and phospholipids. Journal of Proteomics, 1985, 11, 341-345.	2.4	4
180	Compartmentalization of ceramide signaling: physical foundations and biological effects. Journal of Cellular Physiology, 2000, 184, 285-300.	4.1	4

#	Article	IF	CITATIONS
181	Digestibility and fate of lutein in chicken. Comparative Biochemistry and Physiology A, Comparative Physiology, 1981, 70, 619-621.	0.6	3
182	Calcium inhibits diacylglycerol uptake by serum albumin. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 701-707.	2.6	3
183	Autophagy protein LC3C binding to phospholipid and interaction with lipid membranes. International Journal of Biological Macromolecules, 2022, 212, 432-441.	7.5	3
184	Lipid signalling: cellular events and their biophysical mechanisms. FEBS Letters, 2002, 531, 1-1.	2.8	2
185	Special issue on sphingolipids. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1863.	2.6	2
186	In Vitro Techniques. , 2006, , 201-378.		2
187	Biophysical properties and membrane organization of ceramides, ceramide-1-phosphate and other simple sphingolipids. Chemistry and Physics of Lipids, 2009, 160, S2.	3.2	2
188	Biophysical Studies of LC3 Family Proteins. Methods in Molecular Biology, 2019, 1880, 91-117.	0.9	2
189	Surfactant-Induced Liposome Fusion: Molecular Mechanisms and Biotechnological Applications. Advances in Experimental Medicine and Biology, 1988, 238, 81-103.	1.6	2
190	Effect of sodium dodecyl sulphate on sonicated and non-sonicated phosphatidylcholine vesicles. Biochemical Society Transactions, 1980, 8, 555-556.	3.4	1
191	Effect of Sublytic Concentrations of Sodium Cholate on Phospholipase C Hydrolysis of Phospholipid Bilayers. Journal of Colloid and Interface Science, 1999, 219, 163-167.	9.4	1
192	Detergent Effects on Membranes at Sub-Solubilizing Concentrations: Transmembrane Lipid Motion, Bilayer Permeabilization and Vesicle Lysis/reassembly are Independent Phenomena. Biophysical Journal, 2010, 98, 626a.	0.5	1
193	Dihydrosphingomyelin Impairs HIV-1 infection by Rigidifying Liquid-Ordered Membrane Domains. Biophysical Journal, 2011, 100, 634a.	0.5	1
194	Plasma membrane effects of sphingolipid-synthesis inhibition by myriocin in CHO cells: a biophysical and lipidomic study. Scientific Reports, 2022, 12, 955.	3.3	1
195	Sphingomyelinases and Their Interaction with Membrane Lipids. , 2005, , 79-100.		0
196	On the Mechanism of Phospholipase C-Induced Fusion of Pure Lipid Membranes. , 1991, , 177-194.		0
197	Cholesterol and ceramide: An unlikely pair. , 2022, , 111-126.		Ο