
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3700287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 2010, 15, 684-692.	8.8	1,571
2	Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 8449-8454.	7.1	703
3	The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC). Proceedings of the United States of America, 2000, 97, 3753-3758.	7.1	366
4	The evolution and diversification of Dicers in plants. FEBS Letters, 2006, 580, 2442-2450.	2.8	283
5	Molecular analysis of the alcohol dehydrogenase 2 (Adh2) gene of maize. Nucleic Acids Research, 1985, 13, 727-743.	14.5	262
6	Isolation and identification by sequence homology of a putative cytosine methyltransferase fromArabidopsis thaliana. Nucleic Acids Research, 1993, 21, 2383-2388.	14.5	258
7	DNA methylation, a key regulator of plant development and other processes. Current Opinion in Genetics and Development, 2000, 10, 217-223.	3.3	240
8	Vernalization-Induced Trimethylation of Histone H3 Lysine 27 at FLC Is Not Maintained in Mitotically Quiescent Cells. Current Biology, 2007, 17, 1978-1983.	3.9	221
9	Vernalization-induced flowering in cereals is associated with changes in histone methylation at the <i>VERNALIZATION1</i> gene. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8386-8391.	7.1	208
10	Regulation of Carotenoid Composition and Shoot Branching in <i>Arabidopsis</i> by a Chromatin Modifying Histone Methyltransferase, SDG8. Plant Cell, 2009, 21, 39-53.	6.6	207
11	DNA methylation and the promotion of flowering by vernalization. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 5824-5829.	7.1	205
12	Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nature Plants, 2015, 1, 14016.	9.3	186
13	Direct links between the vernalization response and other key traits of cereal crops. Nature Communications, 2015, 6, 5882.	12.8	177
14	The small RNA world. Journal of Cell Science, 2003, 116, 4689-4693.	2.0	169
15	Posttranscriptional Gene Silencing Is Not Compromised in the Arabidopsis CARPEL FACTORY (DICER-LIKE1) Mutant, a Homolog of Dicer-1 from Drosophila. Current Biology, 2003, 13, 236-240.	3.9	142
16	The control of flowering by vernalization. Current Opinion in Plant Biology, 2000, 3, 418-422.	7.1	126
17	The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. Plant Journal, 2005, 44, 420-432.	5.7	125
18	Grasses provide new insights into regulation of shoot branching. Trends in Plant Science, 2013, 18, 41-48.	8.8	124

#	Article	IF	CITATIONS
19	Vernalization-Repression of Arabidopsis FLC Requires Promoter Sequences but Not Antisense Transcripts. PLoS ONE, 2011, 6, e21513.	2.5	121
20	Quantitative effects of vernalization onFLCandSOC1expression. Plant Journal, 2006, 45, 871-883.	5.7	98
21	Structure and expression of an alcohol dehydrogenase 1 gene from Pisum sativum (cv. "Greenfeastâ€). Journal of Molecular Biology, 1987, 195, 115-123.	4.2	93
22	Epialleles — a source of random variation in times of stress. Current Opinion in Plant Biology, 2002, 5, 101-106.	7.1	88
23	Replicating satellite RNA induces sequence-specific DNA methylation and truncated transcripts in plants. Rna, 2001, 7, 16-28.	3.5	87
24	Analysis of alternative transcripts of the flaxL6rust resistance gene. Plant Journal, 1999, 17, 287-292.	5.7	86
25	Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes. Genome Biology, 2013, 14, R65.	8.8	82
26	Passing the message on: inheritance of epigenetic traits. Trends in Plant Science, 2007, 12, 211-216.	8.8	77
27	A Cluster of Arabidopsis Genes with a Coordinate Response to an Environmental Stimulus. Current Biology, 2004, 14, 911-916.	3.9	74
28	New alleles of the wheat domestication gene <i>Q</i> reveal multiple roles in growth and reproductive development. Development (Cambridge), 2017, 144, 1959-1965.	2.5	74
29	Multiple DNA methyltransferase genes in Arabidopsis thaliana. Plant Molecular Biology, 1999, 41, 269-278.	3.9	70
30	Kicking against the PRCs – A Domesticated Transposase Antagonises Silencing Mediated by Polycomb Group Proteins and Is an Accessory Component of Polycomb Repressive Complex 2. PLoS Genetics, 2015, 11, e1005660.	3.5	68
31	Site specificity of the Arabidopsis METI DNA methyltransferase demonstrated through hypermethylation of the superman locus. Plant Molecular Biology, 2001, 46, 171-183.	3.9	67
32	UBIQUITIN-SPECIFIC PROTEASE 26 Is Required for Seed Development and the Repression of <i>PHERES1</i> in Arabidopsis. Genetics, 2008, 180, 229-236.	2.9	66
33	Transcriptionâ€dependence of histone H3 lysine 27 trimethylation at the Arabidopsis polycomb target gene <i>FLC</i> . Plant Journal, 2011, 65, 872-881.	5.7	65
34	Histone Acetylation, VERNALIZATION INSENSITIVE 3 , FLOWERING LOCUS C , and the Vernalization Response. Molecular Plant, 2009, 2, 724-737.	8.3	64
35	<i>VERNALIZATION INSENSITIVE 3</i> (<i>VIN3</i>) is required for the response of <i>Arabidopsis thaliana</i> seedlings exposed to low oxygen conditions. Plant Journal, 2009, 59, 576-587.	5.7	59
36	Epigenetic imbalance and the floral developmental abnormality of the in vitro-regenerated oil palm Elaeis guineensis. Annals of Botany, 2011, 108, 1453-1462.	2.9	59

#	Article	IF	CITATIONS
37	Mechanisms of gene repression by vernalization in Arabidopsis. Plant Journal, 2009, 59, 488-498.	5.7	56
38	<i>APETALAÂ2â€</i> like genes <i>AP2L2</i> and <i>Q</i> specify lemma identity and axillary floral meristem development inÂwheat. Plant Journal, 2020, 101, 171-187.	5.7	56
39	Genetic and DNA Methylation Changes in Cotton (Gossypium) Genotypes and Tissues. PLoS ONE, 2014, 9, e86049.	2.5	56
40	A 22â€nt artificial micro RNA mediates widespread RNA silencing in A rabidopsis. Plant Journal, 2013, 76, 519-529.	5.7	52
41	Isolation and expression analysis of genes encoding MET, CMT, and DRM methyltransferases in oil palm (Elaeis guineensis Jacq.) in relation to the â€~mantled' somaclonal variation. Journal of Experimental Botany, 2008, 59, 3271-3281.	4.8	49
42	Developmental responses of bread wheat to changes in ambient temperature following deletion of a locus that includes <i>FLOWERING LOCUS T1</i> . Plant, Cell and Environment, 2018, 41, 1715-1725.	5.7	46
43	The low temperature response pathways for cold acclimation and vernalization are independent. Plant, Cell and Environment, 2011, 34, 1737-1748.	5.7	43
44	The key role of terminators on the expression and postâ€ŧranscriptional gene silencing of transgenes. Plant Journal, 2020, 104, 96-112.	5.7	43
45	Polycomb proteins regulate the quantitative induction of <i>VERNALIZATION INSENSITIVE 3</i> in response to low temperatures. Plant Journal, 2011, 65, 382-391.	5.7	38
46	Zebularine treatment is associated with deletion of <i>FT</i> â€ <i>B1</i> leading to an increase in spikelet number in bread wheat. Plant, Cell and Environment, 2018, 41, 1346-1360.	5.7	36
47	Opposing effects of reduced DNA methylation on flowering time in Arabidopsis thaliana. Planta, 2003, 216, 461-466.	3.2	34
48	Mutants in the imprinted <i><scp>PICKLE RELATED</scp> 2</i> gene suppress seed abortion of <i>fertilization independent seed</i> class mutants and paternal excess interploidy crosses in Arabidopsis. Plant Journal, 2017, 90, 383-395.	5.7	34
49	Vernalization and the initiation of flowering. Seminars in Cell and Developmental Biology, 1996, 7, 441-448.	5.0	32
50	A flax transposon identified in two spontaneous mutant alleles of theL6rust resistance gene. Plant Journal, 1998, 16, 365-369.	5.7	31
51	The FLX Gene of Arabidopsis is Required for FRI-Dependent Activation of FLC Expression. Plant and Cell Physiology, 2007, 49, 191-200.	3.1	31
52	Imprinting in rice: the role of <scp>DNA</scp> and histone methylation in modulating parentâ€ofâ€origin specific expression and determining transcript start sites. Plant Journal, 2014, 79, 232-242.	5.7	31
53	Behaviour of modified Ac elements in flax callus and regenerated plants. Plant Molecular Biology, 1993, 22, 625-633.	3.9	30
54	How is FLC repression initiated by cold?. Trends in Plant Science, 2015, 20, 76-82.	8.8	29

#	Article	IF	CITATIONS
55	Promoting gene expression in plants by permissive histone lysine methylation. Plant Signaling and Behavior, 2009, 4, 484-488.	2.4	26
56	Transcription of the maize transposable element Ac in maize seedlings and in transgenic tobacco. Molecular Genetics and Genomics, 1988, 212, 505-509.	2.4	25
57	The maize transposable element Ac excises in progeny of transformed tobacco. Plant Molecular Biology, 1989, 13, 109-118.	3.9	22
58	Self-incompatibility: Smi silences through a novel sRNA pathway. Trends in Plant Science, 2011, 16, 238-241.	8.8	20
59	Hypoxia. Plant Signaling and Behavior, 2009, 4, 773-776.	2.4	9
60	Timeâ€dependent stabilization of the +1 nucleosome is an early step in the transition to stable coldâ€induced repression of <i>FLC</i> . Plant Journal, 2015, 84, 875-885.	5.7	9
61	Cloning a Rust-Resistance Gene in Flax. Current Plant Science and Biotechnology in Agriculture, 1994, , 303-306.	0.0	8
62	Resetting FLOWERING LOCUS C Expression After Vernalization Is Just Activation in the Early Embryo by a Different Name. Frontiers in Plant Science, 2020, 11, 620155.	3.6	7
63	Vernalization. Current Biology, 2012, 22, R471-R472.	3.9	5
64	Leaving the Past Behind. PLoS Genetics, 2008, 4, e1000248.	3.5	3
65	Polycomb repression. Plant Signaling and Behavior, 2008, 3, 412-414.	2.4	2
66	Aspects of the ac/ds transposable element system in maize. Journal of Cell Science, 1987, 1987, 123-138.	2.0	0
67	What makes for sound science?. BMC Plant Biology, 2017, 17, 196.	3.6	0