Christopher Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3699652/publications.pdf

Version: 2024-02-01

304743 477307 4,518 29 22 29 h-index citations g-index papers 30 30 30 4638 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Loss in microbial diversity affects nitrogen cycling in soil. ISME Journal, 2013, 7, 1609-1619.	9.8	603
2	The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME Journal, 2013, 7, 417-426.	9.8	529
3	Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME Journal, 2009, 3, 597-605.	9.8	478
4	Phylogenetic Analysis of Nitrite, Nitric Oxide, and Nitrous Oxide Respiratory Enzymes Reveal a Complex Evolutionary History for Denitrification. Molecular Biology and Evolution, 2008, 25, 1955-1966.	8.9	424
5	Genomics and Ecology of Novel N2O-Reducing Microorganisms. Trends in Microbiology, 2018, 26, 43-55.	7.7	388
6	Intergenomic Comparisons Highlight Modularity of the Denitrification Pathway and Underpin the Importance of Community Structure for N2O Emissions. PLoS ONE, 2014, 9, e114118.	2.5	383
7	Recently identified microbial guild mediates soil N2O sink capacity. Nature Climate Change, 2014, 4, 801-805.	18.8	364
8	Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Global Change Biology, 2011, 17, 1497-1504.	9.5	300
9	Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. ISME Journal, 2010, 4, 633-641.	9.8	217
10	Soil carbon quality and nitrogen fertilization structure bacterial communities with predictable responses of major bacterial phyla. Applied Soil Ecology, 2014, 84, 62-68.	4.3	162
11	Changes in faecal bacteria associated with concentrate and forageâ€only diets fed to horses in training. Equine Veterinary Journal, 2009, 41, 908-914.	1.7	126
12	Phenotypic and genotypic heterogeneity among closely related soil-borne N2- and N2O-producing Bacillus isolates harboring the nosZ gene. FEMS Microbiology Ecology, 2011, 76, 541-552.	2.7	53
13	Spatial and phyloecological analyses of nosZ genes underscore niche differentiation amongst terrestrial N2O reducing communities. Soil Biology and Biochemistry, 2017, 115, 82-91.	8.8	52
14	Geospatial variation in coâ€occurrence networks of nitrifying microbial guilds. Molecular Ecology, 2019, 28, 293-306.	3.9	50
15	Soil type overrides plant effect on genetic and enzymatic N2O production potential in arable soils. Soil Biology and Biochemistry, 2016, 100, 125-128.	8.8	47
16	Intercropping affects genetic potential for inorganic nitrogen cycling by root-associated microorganisms in Medicago sativa and Dactylis glomerata. Applied Soil Ecology, 2017, 119, 260-266.	4.3	45
17	The DNRA-Denitrification Dichotomy Differentiates Nitrogen Transformation Pathways in Mountain Lake Benthic Habitats. Frontiers in Microbiology, 2019, 10, 1229.	3.5	44
18	Habitat partitioning of marine benthic denitrifier communities in response to oxygen availability. Environmental Microbiology Reports, 2016, 8, 486-492.	2.4	42

#	Article	IF	CITATIONS
19	Design and evaluation of primers targeting genes encoding NO-forming nitrite reductases: implications for ecological inference of denitrifying communities. Scientific Reports, 2016, 6, 39208.	3.3	37
20	Expression of nirK and nirS genes in two strains of Pseudomonas stutzeri harbouring both types of NO-forming nitrite reductases. Research in Microbiology, 2018, 169, 343-347.	2.1	35
21	Soil microbial community analysis using two-dimensional polyacrylamide gel electrophoresis of the bacterial ribosomal internal transcribed spacer regions. Journal of Microbiological Methods, 2007, 69, 256-267.	1.6	25
22	Lucerne (Medicago sativa) alters N2O-reducing communities associated with cocksfoot (Dactylis) Tj ETQq0 0 0 Biology and Biochemistry, 2019, 137, 107547.	rgBT /Ove 8.8	rlock 10 Tf 50 25
23	Global Phylogeography of Chitinase Genes in Aquatic Metagenomes. Applied and Environmental Microbiology, 2011, 77, 1101-1106.	3.1	21
24	Catch Crop Residues Stimulate N2O Emissions During Spring, Without Affecting the Genetic Potential for Nitrite and N2O Reduction. Frontiers in Microbiology, 2018, 9, 2629.	3.5	17
25	Denitrification rates in lake sediments of mountains affected by high atmospheric nitrogen deposition. Scientific Reports, 2020, 10, 3003.	3.3	16
26	Assessing costs and benefits of improved soil quality management in remediation projects: A study of an urban site contaminated with PAH and metals. Science of the Total Environment, 2020, 707, 135582.	8.0	13
27	Reactive nitrogen restructures and weakens microbial controls of soil N2O emissions. Communications Biology, 2022, 5, 273.	4.4	11
28	Minimizing tillage modifies fungal denitrifier communities, increases denitrification rates and enhances the genetic potential for fungal, relative to bacterial, denitrification. Soil Biology and Biochemistry, 2022, 170, 108718.	8.8	6
29	Habitat diversity and type govern potential nitrogen loss by denitrification in coastal sediments and differences in ecosystem-level diversities of disparate N2O reducing communities. FEMS Microbiology Ecology, 2020, 96, .	2.7	5