Janet Braam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3699000/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell, 1990, 60, 357-364.	28.9	698
2	The XTH Family of Enzymes Involved in Xyloglucan Endotransglucosylation and Endohydrolysis: Current Perspectives and a New Unifying Nomenclature. Plant and Cell Physiology, 2002, 43, 1421-1435.	3.1	679
3	In touch: plant responses to mechanical stimuli. New Phytologist, 2005, 165, 373-389.	7.3	553
4	Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends in Plant Science, 2005, 10, 383-389.	8.8	428
5	Calmodulins and related potential calcium sensors of Arabidopsis. New Phytologist, 2003, 159, 585-598.	7.3	291
6	<i>Arabidopsis</i> synchronizes jasmonate-mediated defense with insect circadian behavior. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4674-4677.	7.1	276
7	<i>XTH31,</i> Encoding an in Vitro XEH/XET-Active Enzyme, Regulates Aluminum Sensitivity by Modulating in Vivo XET Action, Cell Wall Xyloglucan Content, and Aluminum Binding Capacity in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 4731-4747.	6.6	235
8	Thigmomorphogenesis: a complex plant response to mechano-stimulation. Journal of Experimental Botany, 2008, 60, 43-56.	4.8	221
9	Genomeâ€wide identification of touch―and darknessâ€regulated Arabidopsis genes: a focus on calmodulinâ€like and XTH genes. New Phytologist, 2005, 165, 429-444.	7.3	217
10	The Arabidopsis XET-related gene family: environmental and hormonal regulation of expression. Plant Journal, 1996, 9, 879-889.	5.7	214
11	Phytostimulation of Poplars and <i>Arabidopsis</i> Exposed to Silver Nanoparticles and Ag ⁺ at Sublethal Concentrations. Environmental Science & Technology, 2013, 47, 5442-5449.	10.0	201
12	Innate Immunity Signaling: Cytosolic Ca2+ Elevation Is Linked to Downstream Nitric Oxide Generation through the Action of Calmodulin or a Calmodulin-Like Protein Â. Plant Physiology, 2008, 148, 818-828.	4.8	199
13	CML24, Regulated in Expression by Diverse Stimuli, Encodes a Potential Ca2+ Sensor That Functions in Responses to Abscisic Acid, Daylength, and Ion Stress. Plant Physiology, 2005, 139, 240-253.	4.8	158
14	Arabidopsis Touch-Induced Morphogenesis Is Jasmonate Mediated and Protects against Pests. Current Biology, 2012, 22, 701-706.	3.9	154
15	Fluorescence Reports Intact Quantum Dot Uptake into Roots and Translocation to Leaves of <i>Arabidopsis thaliana</i> and Subsequent Ingestion by Insect Herbivores. Environmental Science & Technology, 2015, 49, 626-632.	10.0	117
16	In vitro activities of four xyloglucan endotransglycosylases from Arabidopsis. Plant Journal, 1999, 18, 371-382.	5.7	109
17	Developmental Expression Patterns of Arabidopsis XTH Genes Reported by Transgenes and Genevestigator. Plant Molecular Biology, 2006, 61, 451-467.	3.9	95
18	Coordination between Apoplastic and Symplastic Detoxification Confers Plant Aluminum Resistance. Plant Physiology, 2013, 162, 1947-1955.	4.8	95

Janet Braam

#	Article	IF	CITATIONS
19	Intronic T-DNA Insertion Renders Arabidopsis <i>opr3</i> a Conditional Jasmonic Acid-Producing Mutant Â. Plant Physiology, 2011, 156, 770-778.	4.8	93
20	Xyloglucan Endotransglucosylase-Hydrolase17 Interacts with Xyloglucan Endotransglucosylase-Hydrolase31 to Confer Xyloglucan Endotransglucosylase Action and Affect Aluminum Sensitivity in Arabidopsis. Plant Physiology, 2014, 165, 1566-1574.	4.8	87
21	Plant responses to environmental stress: regulation and functions of the ArabidopsisTCH genes. Planta, 1997, 203, S35-S41.	3.2	84
22	Transcriptional and Posttranscriptional Regulation of ArabidopsisTCH4 Expression by Diverse Stimuli. Roles of cis Regions and Brassinosteroids. Plant Physiology, 2002, 130, 770-783.	4.8	80
23	Postharvest Circadian Entrainment Enhances Crop Pest Resistance and Phytochemical Cycling. Current Biology, 2013, 23, 1235-1241.	3.9	73
24	Arabidopsis Potential Calcium Sensors Regulate Nitric Oxide Levels and the Transition to Flowering. Plant Signaling and Behavior, 2007, 2, 446-454.	2.4	66
25	Circadian oscillations of cytosolic free calcium regulate the Arabidopsis circadian clock. Nature Plants, 2018, 4, 690-698.	9.3	65
26	<i>Arabidopsis</i> Chlorophyll Biosynthesis: An Essential Balance between the Methylerythritol Phosphate and Tetrapyrrole Pathways Â. Plant Cell, 2014, 25, 4984-4993.	6.6	58
27	Life in a changing world: TCH gene regulation of expression and responses to environmental signals. Physiologia Plantarum, 1996, 98, 909-916.	5.2	57
28	Ten isoenzymes of xyloglucan endotransglycosylase from plant cell walls select and cleave the donor substrate stochastically. Biochemical Journal, 2001, 355, 671-679.	3.7	49
29	Nitric oxide accumulation in Arabidopsis is independent of NOA1 in the presence of sucrose. Plant Journal, 2011, 68, 225-233.	5.7	48
30	Arabidopsis <i>XTH4</i> and <i>XTH9</i> Contribute to Wood Cell Expansion and Secondary Wall Formation. Plant Physiology, 2020, 182, 1946-1965.	4.8	45
31	Circadian control of jasmonates and salicylates. Plant Signaling and Behavior, 2013, 8, e23123.	2.4	42
32	Keeping the rhythm: light/dark cycles during postharvest storage preserve the tissue integrity and nutritional content of leafy plants. BMC Plant Biology, 2015, 15, 92.	3.6	42
33	Characterization of and isolation methods for plant leaf nanovesicles and small extracellular vesicles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102271.	3.3	41
34	CML24 is Involved in Root Mechanoresponses and Cortical Microtubule Orientation in Arabidopsis. Journal of Plant Growth Regulation, 2011, 30, 467-479.	5.1	38
35	Quantitative and functional posttranslational modification proteomics reveals that TREPH1 plays a role in plant touch-delayed bolting. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10265-E10274.	7.1	37
36	CIRCADIAN CLOCK-ASSOCIATED1 Controls Resistance to Aphids by Altering Indole Glucosinolate Production. Plant Physiology, 2019, 181, 1344-1359.	4.8	34

Janet Braam

#	Article	IF	CITATIONS
37	Calmodulinâ€related <scp>CML</scp> 24 interacts with <scp>ATG</scp> 4b and affects autophagy progression in <scp>A</scp> rabidopsis. Plant Journal, 2013, 73, 325-335.	5.7	31
38	Comparative modeling of the three-dimensional structure of the calmodulin-related TCH2 protein from arabidopsis. , 1997, 27, 144-153.		20
39	Thigmomorphogenesis. Current Biology, 2017, 27, R863-R864.	3.9	13
40	In Planta Response of Arabidopsis to Photothermal Impact Mediated by Gold Nanoparticles. Small, 2016, 12, 623-630.	10.0	11
41	Mechanical Force Responses of Plant Cells and Plants. Signaling and Communication in Plants, 2011, , 173-194.	0.7	9
42	Jasmonates in Plant Defense Responses. Signaling and Communication in Plants, 2012, , 67-88.	0.7	5
43	Rosette core fungal resistance in Arabidopsis thaliana. Planta, 2019, 250, 1941-1953.	3.2	2