Paolo Tanga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3697461/publications.pdf

Version: 2024-02-01

		126907	17592
121	17,733	33	121
papers	citations	h-index	g-index
122	122	122	10114
132	132	132	12114
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A1.	5.1	6,364
2	The <i>Gaia </i> hi>mission. Astronomy and Astrophysics, 2016, 595, A1.	5.1	4,509
3	<i>Gaia</i> Data Release 1. Astronomy and Astrophysics, 2016, 595, A2.	5.1	1,590
4	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A10.	5.1	638
5	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A17.	5.1	495
6	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A12.	5.1	491
7	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A11.	5.1	323
8	Collisions and Gravitational Reaccumulation: Forming Asteroid Families and Satellites. Science, 2001, 294, 1696-1700.	12.6	257
9	Forming Planetesimals in Vortices. Icarus, 1996, 121, 158-170.	2.5	161
10	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A14.	5.1	140
11	On the Size Distribution of Asteroid Families: The Role of Geometry. Icarus, 1999, 141, 65-78.	2.5	124
12	<i>EPOXI</i> : COMET 103P/HARTLEY 2 OBSERVATIONS FROM A WORLDWIDE CAMPAIGN. Astrophysical Journal Letters, 2011, 734, L1.	8.3	96
13	Thermal inertia of main belt asteroids smaller than 100km from IRAS data. Planetary and Space Science, 2009, 57, 259-265.	1.7	93
14	Formation of Asteroid Families by Catastrophic Disruption: Simulations with Fragmentation and Gravitational Reaccumulation. Icarus, 2002, 160, 10-23.	2.5	90
15	<i>Gaia</i> Data Release 1. Astronomy and Astrophysics, 2016, 595, A3.	5.1	85
16	The Gaia Mission: Expected Applications to Asteroid Science. Earth, Moon and Planets, 2007, 101, 97-125.	0.6	82
17	THE SIZE, SHAPE, ALBEDO, DENSITY, AND ATMOSPHERIC LIMIT OF TRANSNEPTUNIAN OBJECT (50000) QUAOAR FROM MULTI-CHORD STELLAR OCCULTATIONS. Astrophysical Journal, 2013, 773, 26.	4.5	79
18	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A13.	5.1	78

#	Article	IF	Citations
19	<i>Gaia</i> Data Release 1. Astronomy and Astrophysics, 2017, 605, A79.	5.1	78
20	<i>Gaia</i> Data Release 1. Astronomy and Astrophysics, 2017, 601, A19.	5.1	77
21	The geology and geophysics of Kuiper Belt object (486958) Arrokoth. Science, 2020, 367, .	12.6	76
22	The Velocity–Size Relationship for Members of Asteroid Families and Implications for the Physics of Catastrophic Collisions. Icarus, 1999, 141, 79-95.	2.5	61
23	Dynamics of passively advected impurities in simple twoâ€dimensional flow models. Physics of Fluids A, Fluid Dynamics, 1992, 4, 1805-1820.	1.6	60
24	Transmission spectrum of Venus as a transiting exoplanet. Astronomy and Astrophysics, 2012, 537, L2.	5.1	51
25	COUPLED SPIN AND SHAPE EVOLUTION OF SMALL RUBBLE-PILE ASTEROIDS: SELF-LIMITATION OF THE YORP EFFECT. Astrophysical Journal, 2015, 803, 25.	4. 5	51
26	VLT/SPHERE imaging survey of the largest main-belt asteroids: Final results and synthesis. Astronomy and Astrophysics, 2021, 654, A56.	5.1	50
27	Instrumental methods for professional and amateur collaborations in planetary astronomy. Experimental Astronomy, 2014, 38, 91-191.	3.7	47
28	On the calibration of the relation between geometric albedo and polarimetric properties for the asteroids. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3473-3488.	4.4	46
29	Estimated Abundance of Atens and Asteroids Evolving on Orbits between Earth and Sun. Icarus, 2000, 143, 421-424.	2.5	40
30	High-precision Orbit Fitting and Uncertainty Analysis of (486958) 2014 MU69. Astronomical Journal, 2018, 156, 20.	4.7	39
31	A basin-free spherical shape as an outcome of a giant impact on asteroid Hygiea. Nature Astronomy, 2020, 4, 136-141.	10.1	38
32	Genetic inversion of sparse disk-integrated photometric data of asteroids: application to Hipparcos data. Astronomy and Astrophysics, 2009, 506, 935-954.	5.1	34
33	The thermal structure of the Venus atmosphere: Intercomparison of Venus Express and ground based observations of vertical temperature and density profiles. Icarus, 2017, 294, 124-155.	2.5	34
34	New polarimetric and spectroscopic evidence of anomalous enrichment in spinel-bearing calcium-aluminium-rich inclusions among L-type asteroids. Icarus, 2018, 304, 31-57.	2.5	34
35	Visible spectroscopy of the Polana–Eulalia family complex: Spectral homogeneity. Icarus, 2016, 266, 57-75.	2.5	33
36	RUBBLE-PILE RESHAPING REPRODUCES OVERALL ASTEROID SHAPES. Astrophysical Journal, 2009, 706, L197-L202.	4. 5	32

#	Article	IF	CITATIONS
37	Dynamics of advected tracers with varying buoyancy. Physica D: Nonlinear Phenomena, 1994, 76, 202-215.	2.8	31
38	The shallow magnitude distribution of asteroid families. Icarus, 2003, 162, 328-336.	2.5	31
39	An optimal Mars Trojan asteroid search strategy. Monthly Notices of the Royal Astronomical Society, 2012, 424, 372-376.	4.4	31
40	The EChO science case. Experimental Astronomy, 2015, 40, 329-391.	3.7	31
41	Study of the Plutino Object (208996) 2003 AZ ₈₄ from Stellar Occultations: Size, Shape, and Topographic Features. Astronomical Journal, 2017, 154, 22.	4.7	31
42	HST/FGS Observations of the Asteroid (216) Kleopatra. Icarus, 2001, 153, 451-454.	2.5	30
43	Asteroid spectroscopy with Gaia. Planetary and Space Science, 2012, 73, 86-94.	1.7	30
44	Asteroid occultations today and tomorrow: toward the GAIA era. Astronomy and Astrophysics, 2007, 474, 1015-1022.	5.1	29
45	The impact crater at the origin of the Julia family detected with VLT/SPHERE?. Astronomy and Astrophysics, 2018, 618, A154.	5.1	29
46	A successful search for hidden Barbarians in the Watsonia asteroid family. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 439, L75-L79.	3.3	28
47	Gravitational instability and clustering in a disk of planetesimals. Astronomy and Astrophysics, 2004, 427, 1105-1115.	5.1	27
48	A Lagrangian study of the Antarctic polar vortex. Journal of Geophysical Research, 1997, 102, 6765-6773.	3.3	26
49	The violent collisional history of aqueously evolved (2) Pallas. Nature Astronomy, 2020, 4, 569-576.	10.1	26
50	Homogeneous internal structure of CM-like asteroid (41) Daphne. Astronomy and Astrophysics, 2019, 623, A132.	5.1	25
51	Asteroid (16) Psyche's primordial shape: A possible Jacobi ellipsoid. Astronomy and Astrophysics, 2020, 638, L15.	5.1	25
52	Size and Shape Constraints of (486958) Arrokoth from Stellar Occultations. Astronomical Journal, 2020, 159, 130.	4.7	25
53	A polarimetric study of asteroids: fitting phase–polarization curves. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2091-2100.	4.4	24
54	The Solar System as seen by Gaia: The asteroids and their accuracy budget. Planetary and Space Science, 2012, 73, 5-9.	1.7	23

#	Article	IF	Citations
55	Sunlight refraction in the mesosphere of Venus during the transit on June 8th, 2004. Icarus, 2012, 218, 207-219.	2.5	23
56	Asteroid observations with the Hubble Space Telescope FGS. Astronomy and Astrophysics, 2003, 401, 733-741.	5.1	23
57	Predictions for the Dynamical States of the Didymos System before and after the Planned DART Impact. Planetary Science Journal, 2022, 3, 157.	3.6	23
58	Determination of physical properties of the Asteroid (41) Daphne from interferometric observations in the thermal infrared. Icarus, 2011, 215, 47-56.	2.5	22
59	Testing the inversion of asteroids' Gaia photometry combined with ground-based observations. Monthly Notices of the Royal Astronomical Society, 2015, 450, 333-341.	4.4	22
60	Effect of turbulence on collisions of dust particles with planetesimals in protoplanetary disks. Astronomy and Astrophysics, 2016, 589, A129.	5.1	21
61	New Evidence for a Physical Link between Asteroids (155140) 2005 UD and (3200) Phaethon*. Planetary Science Journal, 2020, 1, 15.	3.6	21
62	Closing the gap between Earth-based and interplanetary mission observations: Vesta seen by VLT/SPHERE. Astronomy and Astrophysics, 2019, 623, A6.	5.1	20
63	The daily processing of asteroid observations by Gaia. Planetary and Space Science, 2016, 123, 87-94.	1.7	17
64	The role of fragment shapes in the simulations of asteroids as gravitational aggregates. Icarus, 2020, 350, 113871.	2.5	17
65	The representation of asteroid shapes: A test for the inversion of Gaia photometry. Planetary and Space Science, 2012, 73, 80-85.	1.7	16
66	Short arc orbit determination and imminent impactors in the <i>Gaia</i> era. Astronomy and Astrophysics, 2018, 614, A27.	5.1	16
67	Binary asteroid (31) Euphrosyne: ice-rich and nearly spherical. Astronomy and Astrophysics, 2020, 641, A80.	5.1	16
68	The Calern Asteroid Polarimetric Survey using the Torino polarimeter: assessment of instrument performances and first scientific results. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4335-4347.	4.4	16
69	Asteroid (216) Kleopatra. Astronomy and Astrophysics, 2002, 392, 729-733.	5.1	15
70	Colors of Jupiter's large anticyclones and the interaction of a Tropical Red Oval with the Great Red Spot in 2008. Journal of Geophysical Research E: Planets, 2013, 118, 2537-2557.	3.6	15
71	Asteroids observations with the Hubble Space Telescope FGS. Astronomy and Astrophysics, 2002, 391, 1123-1132.	5.1	14
72	Speckle interferometry observations of asteroids at tng. Icarus, 2003, 162, 278-284.	2.5	14

#	Article	IF	CITATIONS
73	Asteroid rotation and shapes from numerical simulations of gravitational re-accumulation. Planetary and Space Science, 2009, 57, 193-200.	1.7	14
74	The PHEMU97 catalogue of observations of the mutual phenomena of the Galilean satellites of Jupiter. Astronomy and Astrophysics, 2006, 451, 733-737.	5.1	14
75	Photocentre offset in ultraprecise astrometry: Implications for barycentre determination and asteroid modelling. Astronomy and Astrophysics, 2004, 416, 367-373.	5.1	13
76	Rotational properties of asteroids from Gaia disk-integrated photometry: A "genetic―algorithm. Advances in Space Research, 2006, 38, 2000-2005.	2.6	13
77	Asteroid science with Gaia: Sizes, spin properties, overall shapes and taxonomy. Advances in Space Research, 2007, 40, 202-208.	2.6	13
78	Astrometric results of observations of mutual occultations and eclipses of the Uranian satellites in 2007. Astronomy and Astrophysics, 2013, 557, A4.	5.1	13
79	All-sky visible and near infrared space astrometry. Experimental Astronomy, 2021, 51, 783-843.	3.7	13
80	The Role of Families in Determining Collision Probability in the Asteroid Main Belt. Icarus, 2001, 153, 52-60.	2.5	12
81	The non-convex shape of (234) Barbara, the first Barbarian*. Monthly Notices of the Royal Astronomical Society, 2015, 448, 3382-3390.	4.4	12
82	Asteroid orbits with Gaia using random-walk statistical ranging. Planetary and Space Science, 2016, 123, 95-100.	1.7	12
83	Interior of top-shaped asteroids with cohesionless surface. Icarus, 2022, 378, 114914.	2.5	12
84	The Gaia Mission and the Asteroids. Lecture Notes in Physics, 2010, , 251-340.	0.7	11
85	An optimal Earth Trojan asteroid search strategy. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 420, L28-L32.	3.3	10
86	Ground-based astrometry calibrated by <i>Gaia </i> DR1: new perspectives in asteroid orbit determination. Astronomy and Astrophysics, 2017, 607, A21.	5.1	9
87	Gaia observations of Solar System objects: Impact on dynamics and ground-based observations. Advances in Space Research, 2007, 40, 209-214.	2.6	8
88	A single-shot optical linear polarimeter for asteroid studies. Proceedings of SPIE, 2012, , .	0.8	8
89	A method to search for large-scale concavities in asteroid shape models. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2233-2241.	4.4	8
90	<title>Spaceguard-1: a space-based observatory for NEO physical characterization and discovery</title> ., 2000, 4013, 433.		7

#	Article	IF	CITATIONS
91	On the detection of the Yarkovsky effect on near-Earth asteroids by means of Gaia. Planetary and Space Science, 2008, 56, 1823-1827.	1.7	7
92	Gaia, an unprecedented observatory for Solar System dynamics. Planetary and Space Science, 2008, 56, 1812-1818.	1.7	7
93	New view on exoplanet transits. Astronomy and Astrophysics, 2015, 576, A13.	5.1	7
94	Ground-based visible spectroscopy of asteroids to support the development of an unsupervised Gaia asteroid taxonomy. Astronomy and Astrophysics, 2020, 642, A80.	5.1	7
95	Imaging polarimetry of comet Hale-Bopp ($C/1995~O1$) around perihelion. Earth, Moon and Planets, 1997, 78, 359-364.	0.6	6
96	Gaia and the asteroids: Local test of GR. Proceedings of the International Astronomical Union, 2009, 5, 325-330.	0.0	6
97	Inversion of HIPPARCOS and <i>Gaia </i> photometric data for asteroids. Astronomy and Astrophysics, 2019, 631, A67.	5.1	6
98	BrangÃ ¤ e: a new family of Barbarian asteroids. Monthly Notices of the Royal Astronomical Society, 2019, 485, 570-576.	4.4	6
99	Potential asteroid discoveries by the ESA <i>Gaia</i> mission. Astronomy and Astrophysics, 2021, 648, A96.	5.1	6
100	Activity of Comet 103P/Hartley 2 at the time of the EPOXI mission fly-by. Icarus, 2013, 222, 766-773.	2.5	5
101	Predictions for the detection of Earth and Mars Trojan asteroids by the Gaia satellite. Monthly Notices of the Royal Astronomical Society, 2014, 437, 4019-4026.	4.4	5
102	Multilayer modeling of the aureole photometry during the Venus transit: comparison between SDO/HMI and VEx/SOIR data. Astronomy and Astrophysics, 2016, 595, A115.	5.1	5
103	The Zadko Telescope: Exploring the Transient Universe. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	5
104	Shape and spin determination of Barbarian asteroids. Astronomy and Astrophysics, 2017, 607, A119.	5.1	5
105	Asteroid astrometry by stellar occultations: Accuracy of the existing sample from orbital fitting. Astronomy and Astrophysics, 2022, 658, A73.	5.1	5
106	Planetesimal clusters in a Keplerian disk. Astronomy and Astrophysics, 2002, 395, 613-623.	5.1	4
107	Volume uncertainty of (7)Âlris shape models from disc-resolved images. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4545-4560.	4.4	3
108	Asteroids from Observations to Models. Lecture Notes in Physics, 2006, , 89-116.	0.7	2

#	Article	IF	CITATIONS
109	Solar System science: Gaia and other forthcoming surveys. EAS Publications Series, 2010, 45, 225-230.	0.3	2
110	Gaia-GOSA: An interactive service for asteroid follow-up observations. EAS Publications Series, 2014, 67-68, 109-112.	0.3	2
111	Analysis of the kinematics of ejecta created after a catastrophic collision. Planetary and Space Science, 2015, 118, 285-295.	1.7	2
112	Optimizing asteroid orbit computation for Gaiawith normal points. Astronomy and Astrophysics, 2018, 620, A101.	5.1	2
113	THE EXPECTED ROLE OF GAIA FOR ASTEROID SCIENCE. , 2006, , 299-316.		2
114	A survey for occultation astrometry of main belt: expected astrometric performances. Astronomy and Astrophysics, 2020, 641, A81.	5.1	2
115	Reference frame linking and tests of GR with Gaia astrometry of asteroids. Proceedings of the International Astronomical Union, 2007, 3, 266-267.	0.0	1
116	Formes d'astéroïdes et formation de satellites : rÃ1e de la réaccumulation gravitationnelle. Comptes Rendus Physique, 2007, 8, 469-480.	0.9	1
117	Complementary ground-based observations for Solar System applications. EAS Publications Series, 2010, 45, 237-242.	0.3	1
118	Venus transit, aureole and solar diameter. Proceedings of the International Astronomical Union, 2012, 8, 485-486.	0.0	1
119	Australian Participation in the Gaia Follow-up Network for Solar System Objects. Publications of the Astronomical Society of Australia, 2013, 30, .	3.4	1
120	Small solar system bodies as granular systems. EPJ Web of Conferences, 2017, 140, 14011.	0.3	1
121	Using Gaia spectrophotometric data for the purposes of asteroid taxonomy. Proceedings of the International Astronomical Union, 2017, 12, 399-400.	0.0	O