
Wayne M Patrick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3697371/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dan Tawfik's Lessons for Protein Engineers about Enzymes Adapting to New Substrates. Biochemistry, 2023, 62, 158-162.	2.5	2
2	Assessing the effectiveness of oxathiapiprolin toward <i>Phytophthora agathidicida</i> , the causal agent of kauri dieback disease. FEMS Microbes, 2022, 2, .	2.1	5
3	Complex Loop Dynamics Underpin Activity, Specificity, and Evolvability in the (βα) ₈ Barrel Enzymes of Histidine and Tryptophan Biosynthesis. Jacs Au, 2022, 2, 943-960.	7.9	10
4	Draft Genome Sequence of a Novel <i>Rhizobium</i> Species Isolated from the Marine Macroalga <i>Codium fragile</i> (Oyster Thief). Microbiology Resource Announcements, 2022, 11, e0003022.	0.6	1
5	Uniform binding and negative catalysis at the origin of enzymes. Protein Science, 2022, 31, .	7.6	5
6	Structures and kinetics of Thermotoga maritima MetY reveal new insights into the predominant sulfurylation enzyme of bacterial methionine biosynthesis. Journal of Biological Chemistry, 2021, 296, 100797.	3.4	14
7	Quantifying the taxonomic bias in enzymology. Protein Science, 2021, 30, 914-921.	7.6	5
8	Enzyme-based amperometric biosensors for malic acid – A review. Analytica Chimica Acta, 2021, 1156, 338218.	5.4	24
9	Enzyme promiscuity in natural environments: alkaline phosphatase in the ocean. ISME Journal, 2021, 15, 3375-3383.	9.8	30
10	Complete Genome Sequence of a Novel Pseudomonas fluorescens Strain Isolated from the Flower of Kūmarahou (Pomaderris kumeraho). Microbiology Resource Announcements, 2021, 10, e0062921.	0.6	0
11	Methods for competitive enrichment and evaluation of superior DNA ligases. Methods in Enzymology, 2020, 644, 209-225.	1.0	5
12	Structure and kinetics of indole-3-glycerol phosphate synthase from Pseudomonas aeruginosa: Decarboxylation is not essential for indole formation. Journal of Biological Chemistry, 2020, 295, 15948-15956.	3.4	1
13	Distinct pseudokinase domain conformations underlie divergent activation mechanisms among vertebrate MLKL orthologues. Nature Communications, 2020, 11, 3060.	12.8	47
14	Intracellular complexities of acquiring a new enzymatic function revealed by mass-randomisation of active-site residues. ELife, 2020, 9, .	6.0	8
15	MÄŧauranga-guided screening of New Zealand native plants reveals flavonoids from kÄnuka (<i>Kunzea) Tj ETQq1 49, 137-154.</i>	1 0.7843 1.9	14 rgBT /0 24
16	A Large-Scale Whole-Genome Comparison Shows that Experimental Evolution in Response to Antibiotics Predicts Changes in Naturally Evolved Clinical Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	31
17	The uncharacterized bacterial protein YejG has the same architecture as domain III of elongation factor G. Proteins: Structure, Function and Bioinformatics, 2019, 87, 699-705.	2.6	0
18	Assessment of Phenotype Microarray plates for rapid and high-throughput analysis of collateral sensitivity networks. PLoS ONE, 2019, 14, e0219879.	2.5	5

WAYNE M PATRICK

#	Article	IF	CITATIONS
19	Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem. Journal of Medical Microbiology, 2019, 68, 1-10.	1.8	137
20	Genomic and phenotypic comparison of environmental and patient-derived isolates of Pseudomonas aeruginosa suggest that antimicrobial resistance is rare within the environment. Journal of Medical Microbiology, 2019, 68, 1591-1595.	1.8	16
21	The BRD3 ET domain recognizes a short peptide motif through a mechanism that is conserved across chromatin remodelers and transcriptional regulators. Journal of Biological Chemistry, 2018, 293, 7160-7175.	3.4	39
22	Enzyme evolution: innovation is easy, optimization is complicated. Current Opinion in Structural Biology, 2018, 48, 110-116.	5.7	70
23	Structural and functional innovations in the real-time evolution of new (βα) ₈ barrel enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4727-4732.	7.1	26
24	<i>Biochemical Evolution: The Pursuit of Perfection</i> . Second Edition. By Athel Cornish-Bowden. New York: Garland Science (Taylor & Francis Group). \$49.95 (paper). xviii + 274 p.; ill.; index. ISBN: 978-0-8153-4552-7. 2016 Quarterly Review of Biology, 2017, 92, 332-333.	0.1	0
25	An Engineered Glycerol Dehydratase With Improved Activity for the Conversion of <i>meso</i> â€2,3â€butanediol to Butanone. Biotechnology Journal, 2017, 12, 1700480.	3.5	9
26	Primordialâ€like enzymes from bacteria with reduced genomes. Molecular Microbiology, 2017, 105, 508-524.	2.5	28
27	High-Throughput Chemical Screening Identifies Compounds that Inhibit Different Stages of the Phytophthora agathidicida and Phytophthora cinnamomi Life Cycles. Frontiers in Microbiology, 2017, 8, 1340.	3.5	22
28	Mechanistic and Evolutionary Insights from the Reciprocal Promiscuity of Two Pyridoxal Phosphate-dependent Enzymes. Journal of Biological Chemistry, 2016, 291, 19873-19887.	3.4	26
29	Whither life? Conjectures on the future evolution of biochemistry. Biology Letters, 2016, 12, 20160269.	2.3	1
30	The <i>in vitro</i> and <i>in vivo</i> effects of constitutive light expression on a bioluminescent strain of the mouse enteropathogen <i>Citrobacter rodentium</i> . PeerJ, 2016, 4, e2130.	2.0	6
31	Archaeal Nucleic Acid Ligases and Their Potential in Biotechnology. Archaea, 2015, 2015, 1-10.	2.3	12
32	Rapid bursts and slow declines: on the possible evolutionary trajectories of enzymes. Journal of the Royal Society Interface, 2015, 12, 20150036.	3.4	26
33	Substitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity. Protein Engineering, Design and Selection, 2015, 28, 251-258.	2.1	25
34	Two-step Ligand Binding in a (βα)8 Barrel Enzyme. Journal of Biological Chemistry, 2015, 290, 24657-24668.	3.4	16
35	Genetic Code Evolution Started with the Incorporation of Glycine, Followed by Other Small Hydrophilic Amino Acids. Journal of Molecular Evolution, 2014, 78, 307-309.	1.8	25
36	Bacterial methionine biosynthesis. Microbiology (United Kingdom), 2014, 160, 1571-1584.	1.8	178

WAYNE M PATRICK

#	Article	IF	CITATIONS
37	Reconstruction of an Acetogenic 2,3-Butanediol Pathway Involving a Novel NADPH-Dependent Primary-Secondary Alcohol Dehydrogenase. Applied and Environmental Microbiology, 2014, 80, 3394-3403.	3.1	89
38	Error-Prone PCR and Effective Generation of Gene Variant Libraries for Directed Evolution. Methods in Molecular Biology, 2014, 1179, 3-22.	0.9	47
39	ITCHY: Incremental Truncation for the Creation of Hybrid Enzymes. Methods in Molecular Biology, 2014, 1179, 225-244.	0.9	4
40	Construction and Analysis of Randomized Protein-Encoding Libraries Using Error-Prone PCR. Methods in Molecular Biology, 2013, 996, 251-267.	0.9	24
41	Desalting DNA by Drop Dialysis Increases Library Size upon Transformation. Bioscience, Biotechnology and Biochemistry, 2013, 77, 402-404.	1.3	8
42	Engineered DNA ligases with improved activities in vitro. Protein Engineering, Design and Selection, 2013, 26, 471-478.	2.1	18
43	New rRNA Gene-Based Phylogenies of the Alphaproteobacteria Provide Perspective on Major Groups, Mitochondrial Ancestry and Phylogenetic Instability. PLoS ONE, 2013, 8, e83383.	2.5	106
44	Characterization of the indole-3-glycerol phosphate synthase from Pseudomonas aeruginosa PAO1. Protein Journal, 2012, 31, 359-365.	1.6	7
45	The Structure of a Truncated Phosphoribosylanthranilate Isomerase Suggests a Unified Model for Evolution of the (βα)8 Barrel Fold. Journal of Molecular Biology, 2011, 408, 291-303.	4.2	17
46	Artificial gene amplification reveals an abundance of promiscuous resistance determinants in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1484-1489.	7.1	144
47	Carbohydrate binding sites in <i>Candidaâ€falbicans</i> exoâ€Î²â€1,3â€glucanase and the role of the Pheâ€Phe â€~clamp' at the active site entrance. FEBS Journal, 2010, 277, 4549-4561.	4.7	29
48	A Study in Molecular Contingency: Glutamine Phosphoribosylpyrophosphate Amidotransferase is a Promiscuous and Evolvable Phosphoribosylanthranilate Isomerase. Journal of Molecular Biology, 2008, 377, 323-336.	4.2	46
49	GLUE-IT and PEDEL-AA: new programmes for analyzing protein diversity in randomized libraries. Nucleic Acids Research, 2008, 36, W281-W285.	14.5	168
50	Multicopy Suppression Underpins Metabolic Evolvability. Molecular Biology and Evolution, 2007, 24, 2716-2722.	8.9	154
51	Natural history as a predictor of protein evolvability. Protein Engineering, Design and Selection, 2006, 19, 439-442.	2.1	51
52	Strategies and computational tools for improving randomized protein libraries. New Biotechnology, 2005, 22, 105-112.	2.7	113
53	In vitro selection and characterization of a stable subdomain of phosphoribosylanthranilate isomerase. FEBS Journal, 2005, 272, 3684-3697.	4.7	18
54	Statistics of protein library construction. Bioinformatics, 2005, 21, 3314-3315.	4.1	74

WAYNE M PATRICK

#	Article	IF	CITATIONS
55	A second-generation system for unbiased reading frame selection. Protein Engineering, Design and Selection, 2004, 17, 595-602.	2.1	32
56	Novel methods for directed evolution of enzymes: quality, not quantity. Current Opinion in Biotechnology, 2004, 15, 291-297.	6.6	214
57	User-friendly algorithms for estimating completeness and diversity in randomized protein-encoding libraries. Protein Engineering, Design and Selection, 2003, 16, 451-457.	2.1	143
58	Site-Directed Mutagenesis of Tyr354 in Geobacillus stearothermophilus Alanine Racemase Identifies a Role in Controlling Substrate Specificity and a Possible Role in the Evolution of Antibiotic Resistance. ChemBioChem, 2002, 3, 789.	2.6	28