Carlo Ballatore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3697174/publications.pdf

Version: 2024-02-01

69 papers

5,613 citations

34 h-index 98798 67 g-index

76 all docs

76 docs citations

76 times ranked 7494 citing authors

#	Article	IF	CITATIONS
1	Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay. Communications Biology, 2022, 5, 169.	4.4	118
2	Alzheimer's Disease Drug Discovery in Academia: From High-Throughput Screening to In Vivo Testing. , 2022, , 34-44.		O
3	Thietanes and derivatives thereof in medicinal chemistry Current Topics in Medicinal Chemistry, 2022, 22, .	2.1	1
4	Congeners Derived from Microtubule-Active Phenylpyrimidines Produce a Potent and Long-Lasting Paralysis of <i>Schistosoma mansoni</i> In Vitro. ACS Infectious Diseases, 2021, 7, 1089-1103.	3.8	6
5	Evaluation of the Structure–Activity Relationship of Microtubule-Targeting 1,2,4-Triazolo[1,5- <i>a</i>]pyrimidines Identifies New Candidates for Neurodegenerative Tauopathies. Journal of Medicinal Chemistry, 2021, 64, 1073-1102.	6.4	17
6	Inhibition of the HEG1–KRIT1 interaction increases KLF4 and KLF2 expression in endothelial cells. FASEB BioAdvances, 2021, 3, 334-355.	2.4	8
7	Evaluation of logÂP, pKa, and logÂD predictions from the SAMPL7 blind challenge. Journal of Computer-Aided Molecular Design, 2021, 35, 771-802.	2.9	42
8	Structure property relationships of N-acylsulfonamides and related bioisosteres. European Journal of Medicinal Chemistry, 2021, 218, 113399.	5 . 5	20
9	New Heights for ProTides?. Journal of Medicinal Chemistry, 2021, 64, 16422-16424.	6.4	4
10	Correction of microtubule defects within Aβ plaqueâ€associated dystrophic axons results in lowered Aβ release and plaque deposition. Alzheimer's and Dementia, 2020, 16, 1345-1357.	0.8	11
11	Rational design, synthesis, and evaluation of uncharged, "smart―bis-oxime antidotes of organophosphate-inhibited human acetylcholinesterase. Journal of Biological Chemistry, 2020, 295, 4079-4092.	3.4	24
12	Discovery of New Inhibitors of Hepatitis C Virus NS3/4A Protease and Its D168A Mutant. ACS Omega, 2019, 4, 16999-17008.	3.5	19
13	1,2,4-Triazolo[1,5-a]pyrimidines in drug design. European Journal of Medicinal Chemistry, 2019, 165, 332-346.	5 . 5	68
14	Design, synthesis and evaluation of photoactivatable derivatives of microtubule (MT)-active [1,2,4]triazolo[1,5-a]pyrimidines. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2180-2183.	2.2	21
15	A brain-penetrant triazolopyrimidine enhances microtubule-stability, reduces axonal dysfunction and decreases tau pathology in a mouse tauopathy model. Molecular Neurodegeneration, 2018, 13, 59.	10.8	27
16	Brainâ€Penetrant Triazolopyrimidine and Phenylpyrimidine Microtubule Stabilizers as Potential Leads to Treat Human African Trypanosomiasis. ChemMedChem, 2018, 13, 1751-1754.	3.2	19
17	Multitargeted Imidazoles: Potential Therapeutic Leads for Alzheimer's and Other Neurodegenerative Diseases. Journal of Medicinal Chemistry, 2017, 60, 5120-5145.	6.4	40
18	Altered microtubule dynamics in neurodegenerative disease: Therapeutic potential of microtubule-stabilizing drugs. Neurobiology of Disease, 2017, 105, 328-335.	4.4	74

#	Article	IF	CITATIONS
19	Non-Naturally Occurring Small Molecule Microtubule-Stabilizing Agents: A Potential Tactic for CNS-Directed Therapies. ACS Chemical Neuroscience, 2017, 8, 5-7.	3.5	20
20	Evaluation of Oxetan-3-ol, Thietan-3-ol, and Derivatives Thereof as Bioisosteres of the Carboxylic Acid Functional Group. ACS Medicinal Chemistry Letters, 2017, 8, 864-868.	2.8	32
21	Microtubule Stabilization. , 2016, , 305-326.		2
22	Microtubule-Stabilizing Agents for Alzheimer's and Other Tauopathies. Topics in Medicinal Chemistry, 2016, , 159-179.	0.8	5
23	Evaluation of the brain-penetrant microtubule-stabilizing agent, dictyostatin, in the PS19 tau transgenic mouse model of tauopathy. Acta Neuropathologica Communications, 2016, 4, 106.	5.2	45
24	${\rm A\hat{l}^2}$ -mediated spine changes in the hippocampus are microtubule-dependent and can be reversed by a subnanomolar concentration of the microtubule-stabilizing agent epothilone D. Neuropharmacology, 2016, 105, 84-95.	4.1	48
25	Characterization of Brain-Penetrant Pyrimidine-Containing Molecules with Differential Microtubule-Stabilizing Activities Developed as Potential Therapeutic Agents for Alzheimers Disease and Related Tauopathies. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 432-450.	2.5	58
26	Structure Property Relationships of Carboxylic Acid Isosteres. Journal of Medicinal Chemistry, 2016, 59, 3183-3203.	6.4	189
27	Altered microtubule dynamics and vesicular transport in mouse and human MeCP2-deficient astrocytes. Human Molecular Genetics, 2016, 25, 146-157.	2.9	53
28	Region-specific dendritic simplification induced by ${\rm A\hat{l}^2}$, mediated by tau via dysregulation of microtubule dynamics: a mechanistic distinct event from other neurodegenerative processes. Molecular Neurodegeneration, 2015, 10, 60.	10.8	44
29	Pharmacokinetic, pharmacodynamic and metabolic characterization of a brain retentive microtubule (MT)-stabilizing triazolopyrimidine. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4980-4982.	2.2	31
30	Aminothienopyridazines as imaging probes of tau pathology: a patent evaluation of WO2013090497. Expert Opinion on Therapeutic Patents, 2014, 24, 355-360.	5.0	11
31	Evaluation of the cyclopentane-1,2-dione as a potential bio-isostere of the carboxylic acid functional group. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4171-4175.	2.2	9
32	Brain-Penetrant, Orally Bioavailable Microtubule-Stabilizing Small Molecules Are Potential Candidate Therapeutics for Alzheimer's Disease and Related Tauopathies. Journal of Medicinal Chemistry, 2014, 57, 6116-6127.	6.4	84
33	Potent, Long-Acting Cyclopentane-1,3-Dione Thromboxane (A ₂)-Receptor Antagonists. ACS Medicinal Chemistry Letters, 2014, 5, 1015-1020.	2.8	6
34	Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease. Bioorganic and Medicinal Chemistry, 2014, 22, 5040-5049.	3.0	87
35	MT-Stabilizer, Dictyostatin, Exhibits Prolonged Brain Retention and Activity: Potential Therapeutic Implications. ACS Medicinal Chemistry Letters, 2013, 4, 886-889.	2.8	33
36	Design, Synthesis, and Biological Evaluation of 1-Phenylpyrazolo [3,4- <i>e</i>) pyrrolo [3,4- <i>g</i>) lindolizine-4,6(1 <i>H</i> ,5 <i>H</i>)-diones as New Glycogen Synthase Kinase- $3\hat{1}^2$ Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 10066-10078.	6.4	39

3

#	Article	IF	CITATIONS
37	Carboxylic Acid (Bio)Isosteres in Drug Design. ChemMedChem, 2013, 8, 385-395.	3.2	377
38	Aminothienopyridazines and Methylene Blue Affect Tau Fibrillization via Cysteine Oxidation. Journal of Biological Chemistry, 2013, 288, 11024-11037.	3.4	128
39	Brain-penetrant microtubule-stabilizing compounds as potential therapeutic agents for tauopathies. Biochemical Society Transactions, 2012, 40, 661-666.	3.4	39
40	Brain-Penetrant Tetrahydronaphthalene Thromboxane A2-Prostanoid (TP) Receptor Antagonists as Prototype Therapeutics for Alzheimer's Disease. ACS Chemical Neuroscience, 2012, 3, 928-940.	3.5	22
41	Microtubule Stabilizing Agents as Potential Treatment for Alzheimer's Disease and Related Neurodegenerative Tauopathies. Journal of Medicinal Chemistry, 2012, 55, 8979-8996.	6.4	151
42	Aminothienopyridazine inhibitors of tau aggregation: Evaluation of structure–activity relationship leads to selection of candidates with desirable in vivo properties. Bioorganic and Medicinal Chemistry, 2012, 20, 4451-4461.	3.0	29
43	The Microtubule-Stabilizing Agent, Epothilone D, Reduces Axonal Dysfunction, Neurotoxicity, Cognitive Deficits, and Alzheimer-Like Pathology in an Interventional Study with Aged Tau Transgenic Mice. Journal of Neuroscience, 2012, 32, 3601-3611.	3.6	325
44	Cyclopentane-1,3-dione: A Novel Isostere for the Carboxylic Acid Functional Group. Application to the Design of Potent Thromboxane (A2) Receptor Antagonists. Journal of Medicinal Chemistry, 2011, 54, 6969-6983.	6.4	35
45	The characterization of microtubule-stabilizing drugs as possible therapeutic agents for Alzheimer's disease and related tauopathies. Pharmacological Research, 2011, 63, 341-351.	7.1	135
46	Modulation of Protein-Protein Interactions as a Therapeutic Strategy for the Treatment of Neurodegenerative Tauopathies. Current Topics in Medicinal Chemistry, 2011, 11, 317-330.	2.1	40
47	Solid phase synthesis of 2-aminobenzothiazoles. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 644-648.	2.2	41
48	Epothilone D Improves Microtubule Density, Axonal Integrity, and Cognition in a Transgenic Mouse Model of Tauopathy. Journal of Neuroscience, 2010, 30, 13861-13866.	3.6	256
49	Discovery of Brain-Penetrant, Orally Bioavailable Aminothienopyridazine Inhibitors of Tau Aggregation. Journal of Medicinal Chemistry, 2010, 53, 3739-3747.	6.4	47
50	Tau-directed drug discovery for Alzheimer's disease and related tauopathies: A focus on tau assembly inhibitors. Experimental Neurology, 2010, 223, 304-310.	4.1	81
51	Identification of Aminothienopyridazine Inhibitors of Tau Assembly by Quantitative High-Throughput Screening. Biochemistry, 2009, 48, 7732-7745.	2.5	101
52	In situ blood–brain barrier permeability of a C-10 paclitaxel carbamate. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6119-6121.	2.2	11
53	High throughput screening for small molecule inhibitors of heparin-induced tau fibril formation. Biochemical and Biophysical Research Communications, 2007, 358, 1-6.	2.1	97
54	Paclitaxel C-10 carbamates: Potential candidates for the treatment of neurodegenerative tauopathies. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3642-3646.	2.2	19

#	Article	IF	CITATIONS
55	Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nature Reviews Neuroscience, 2007, 8, 663-672.	10.2	1,866
56	Targeting Heat Shock Proteins on Cancer Cells: Selection, Characterization, and Cell-Penetrating Properties of a Peptidic GRP78 Ligandâ€. Biochemistry, 2006, 45, 9434-9444.	2.5	172
57	Kinase-mediated trapping of bi-functional conjugates of paclitaxel or vinblastine with thymidine in cancer cells. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5194-5198.	2.2	21
58	The design, synthesis, and evaluation of two universal doxorubicin-linkers: Preparation of conjugates that retain topoisomerase II activity. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 104-107.	2.2	8
59	A facile route to paclitaxel C-10 carbamates. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2477-2480.	2.2	8
60	Synthesis and evaluation of novel amidate prodrugs of PMEA and PMPA. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1053-1056.	2.2	60
61	Separation of individual antiviral nucleotide prodrugs from synthetic mixtures using cross-reactivity of a molecularly imprinted stationary phase. Analytica Chimica Acta, 2001, 435, 107-113.	5.4	35
62	Enhancing the aqueous solubility of d4T-based phosphoramidate prodrugs. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 381-384.	2.2	14
63	92 Ara-A-5′-phenyl methoxy alaninyl phosphate as a prodrug of the adenine arabinoside -monophosphate: synthesis and anti viral evaluation. Antiviral Research, 2000, 46, A63.	4.1	2
64	Phosphoramidate Derivatives of Stavudine as Inhibitors of HIV: Unnatural Amino Acids May Substitute for Alanine. Antiviral Chemistry and Chemotherapy, 2000, 11, 111-116.	0.6	11
65	Simple mono-derivatisation of the aryl moiety of D4A and DDA-based phosphoramidate prodrugs significantly enhances their anti-HIV potency in cell culture. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2555-2560.	2.2	12
66	An In Situ Pig Liver Esterase Assay as a Useful Predictive Tool for the Likely In Vitro Anti Viral Activity of Phosphoramidate Pro-Drugs. Nucleosides & Nucleotides, 1999, 18, 967-969.	0.5	1
67	Design and Synthesis of Lipophilic Phosphoramidate d4T-MP Prodrugs Expressing High Potency Against HIV in Cell Culture:  Structural Determinants for in Vitro Activity and QSAR. Journal of Medicinal Chemistry, 1999, 42, 4122-4128.	6.4	61
68	The Presence of Substituents on the Aryl Moiety of the Aryl Phosphoramidate Derivative of d4T Enhances Anti-HIV Efficacy in Cell Culture:  A Structureâ Activity Relationship. Journal of Medicinal Chemistry, 1999, 42, 393-399.	6.4	80
69	Lactate cannot substitute for alanine in D4T-based anti-HIV nucleotide prodrugs-despite efficient esterase-mediated hydrolysis. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2949-2954.	2.2	9