## Roberto Zenit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3696754/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Force and torque-free helical tail robot to study low Reynolds number micro-organism swimming.<br>Review of Scientific Instruments, 2022, 93, 044103.                                          | 1.3 | 4         |
| 2  | Viscoelastic levitation. Journal of Fluid Mechanics, 2022, 943, .                                                                                                                              | 3.4 | 1         |
| 3  | Coiling of a viscoelastic fluid filament. Physical Review Fluids, 2021, 6, .                                                                                                                   | 2.5 | 6         |
| 4  | Front-back asymmetry controls the impact of viscoelasticity on helical swimming. Physical Review Fluids, 2021, 6, .                                                                            | 2.5 | 10        |
| 5  | Texture Analysis of Dried Droplets for the Quality Control of Medicines. Sensors, 2021, 21, 4048.                                                                                              | 3.8 | 8         |
| 6  | Dynamics of a helical swimmer crossing viscosity gradients. Physical Review Fluids, 2021, 6, .                                                                                                 | 2.5 | 10        |
| 7  | The dynamics of compound drops at high Reynolds numbers: Drag, shape, and trajectory. International<br>Journal of Multiphase Flow, 2021, 142, 103699.                                          | 3.4 | 2         |
| 8  | Bubbles determine the amount of alcohol in Mezcal. Scientific Reports, 2020, 10, 11014.                                                                                                        | 3.3 | 11        |
| 9  | Lifetime of Surface Bubbles in Surfactant Solutions. Langmuir, 2020, 36, 7749-7764.                                                                                                            | 3.5 | 17        |
| 10 | Experimental study of the effect of wettability on the relative permeability for air–water flow through porous media. International Journal of Multiphase Flow, 2019, 120, 103091.             | 3.4 | 11        |
| 11 | Pollock avoided hydrodynamic instabilities to paint with his dripping technique. PLoS ONE, 2019, 14, e0223706.                                                                                 | 2.5 | 4         |
| 12 | Viscoelastic propulsion of a rotating dumbbell. Microfluidics and Nanofluidics, 2019, 23, 1.                                                                                                   | 2.2 | 18        |
| 13 | Using CFD and PIV to investigate rotating cage-related hydrodynamics for CO2 corrosion studies analyzing 2-, 4- and 8-coupons setups. Anti-Corrosion Methods and Materials, 2019, 66, 802-811. | 1.5 | 1         |
| 14 | Drag coefficient for a sedimenting and rotating sphere in a viscoelastic fluid. Physical Review Fluids, 2019, 4, .                                                                             | 2.5 | 17        |
| 15 | Dynamics of a helical swimmer crossing an interface between two immiscible fluids. Physical Review<br>Fluids, 2019, 4, .                                                                       | 2.5 | 5         |
| 16 | Self-propulsion of a helical swimmer in granular matter. Physical Review Fluids, 2019, 4, .                                                                                                    | 2.5 | 7         |
| 17 | Some fluid mechanical aspects of artistic painting. Physical Review Fluids, 2019, 4, .                                                                                                         | 2.5 | 8         |
| 18 | Sliding motion of a bubble against an inclined wall from moderate to high bubble Reynolds number.<br>Physical Review Fluids, 2019, 4, .                                                        | 2.5 | 5         |

| #  | Article                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Hydrodynamic Interactions Among Bubbles, Drops, and Particles in Non-Newtonian Liquids. Annual<br>Review of Fluid Mechanics, 2018, 50, 505-534.                             | 25.0 | 101       |
| 20 | Effect of the Fluidâ€Ðynamic Structure on the Mixing Time of a Ladle Furnace. Steel Research<br>International, 2018, 89, 1700281.                                           | 1.8  | 18        |
| 21 | Encapsulation of Droplets Using Cusp Formation behind a Drop Rising in a Non-Newtonian Fluid.<br>Fluids, 2018, 3, 54.                                                       | 1.7  | 6         |
| 22 | The fluid mechanics of bubbly drinks. Physics Today, 2018, 71, 44-50.                                                                                                       | 0.3  | 22        |
| 23 | The lifespan of clusters in confined bubbly liquids. International Journal of Multiphase Flow, 2018, 106, 138-146.                                                          | 3.4  | 3         |
| 24 | On the maximum operating frequency of prosthetic heart valves. Biomedical Physics and Engineering Express, 2018, 4, 047007.                                                 | 1.2  | 1         |
| 25 | Effect of Separation Angle and Nozzle Radial Position on Mixing Time in Ladles with Two Nozzles.<br>Journal of Applied Fluid Mechanics, 2018, 11, 11-20.                    | 0.2  | 13        |
| 26 | Average properties of bidisperse bubbly flows. Physical Review Fluids, 2018, 3, .                                                                                           | 2.5  | 1         |
| 27 | Experimental study on laminar flow over two confined isothermal cylinders in tandem during mixed convection. International Journal of Thermal Sciences, 2017, 115, 176-196. | 4.9  | 18        |
| 28 | The effect of column tilt on flow homogeneity and particle agitation in a liquid fluidized bed.<br>International Journal of Multiphase Flow, 2017, 92, 50-60.               | 3.4  | 4         |
| 29 | A new model for the computation of the formation factor of core rocks. Journal of Structural Geology, 2017, 97, 189-198.                                                    | 2.3  | 5         |
| 30 | Topological invariants can be used to quantify complexity in abstract paintings. Knowledge-Based<br>Systems, 2017, 126, 48-55.                                              | 7.1  | 5         |
| 31 | Helical propulsion in shear-thinning fluids. Journal of Fluid Mechanics, 2017, 812, .                                                                                       | 3.4  | 48        |
| 32 | Effects of inertia and turbulence on rheological measurements of neutrally buoyant suspensions.<br>Journal of Fluid Mechanics, 2017, 811, 525-543.                          | 3.4  | 9         |
| 33 | Hydrodynamic Characterization of Three Axial Impellers under Gassed and Ungassed Conditions.<br>Journal of Chemical Engineering of Japan, 2016, 49, 894-903.                | 0.6  | 2         |
| 34 | Experimental study of the deflections of curved plates exposed to pulsating cross-flows. Acta Mechanica, 2016, 227, 3621-3637.                                              | 2.1  | 1         |
| 35 | The flow inside shaking flasks and its implication for mycelial cultures. Chemical Engineering Science, 2016, 152, 163-171.                                                 | 3.8  | 12        |
| 36 | Drift by air bubbles crossing an interface of a stratified medium at moderate Reynolds number.<br>International Journal of Multiphase Flow, 2016, 85, 258-266.              | 3.4  | 15        |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A space-fractional model of thermo-electromagnetic wave propagation in anisotropic media. Applied<br>Thermal Engineering, 2016, 93, 529-536.                                                                                                               | 6.0 | 7         |
| 38 | Conditions for the sliding-bouncing transition for the interaction of a bubble with an inclined wall.<br>Physical Review Fluids, 2016, 1, .                                                                                                                | 2.5 | 10        |
| 39 | A Hydrodynamic Instability Is Used to Create Aesthetically Appealing Patterns in Painting. PLoS ONE, 2015, 10, e0126135.                                                                                                                                   | 2.5 | 9         |
| 40 | Effect of the curvature of elastic plates on the evolution of pulsatile flow fields. Journal of Fluids and Structures, 2015, 56, 177-189.                                                                                                                  | 3.4 | 3         |
| 41 | Negative vortices: The formation of vortex rings with reversed rotation in viscoelastic liquids.<br>Physics of Fluids, 2015, 27, .                                                                                                                         | 4.0 | 5         |
| 42 | Viscous Filament Fragmentation in a Turbulent Flow Inside a Stirred Tank. Chemical Engineering<br>Communications, 2015, 202, 1251-1260.                                                                                                                    | 2.6 | 10        |
| 43 | Complex fluids affect low-Reynolds number locomotion in a kinematic-dependent manner. Experiments in Fluids, 2015, 56, 1.                                                                                                                                  | 2.4 | 38        |
| 44 | A hydrodynamic description of the flow behavior in shaken flasks. Biochemical Engineering Journal,<br>2015, 99, 61-66.                                                                                                                                     | 3.6 | 19        |
| 45 | Interaction of a vortex ring with a natural convective layer. Physics of Fluids, 2014, 26, 083602.                                                                                                                                                         | 4.0 | 1         |
| 46 | Viscous pumping inspired by flexible propulsion. Bioinspiration and Biomimetics, 2014, 9, 036007.                                                                                                                                                          | 2.9 | 8         |
| 47 | Experimental study of a model valve with flexible leaflets in a pulsatile flow. Journal of Fluid<br>Mechanics, 2014, 739, 338-362.                                                                                                                         | 3.4 | 16        |
| 48 | Compact bubble clusters in Newtonian and non-Newtonian liquids. Physics of Fluids, 2014, 26, .                                                                                                                                                             | 4.0 | 15        |
| 49 | Sedimentation of a rotating sphere in a power-law fluid. Journal of Non-Newtonian Fluid Mechanics, 2014, 213, 27-30.                                                                                                                                       | 2.4 | 5         |
| 50 | A Conjugate Thermo-Electric Model for a Composite Medium. PLoS ONE, 2014, 9, e97895.                                                                                                                                                                       | 2.5 | 1         |
| 51 | Mathematical Modeling of Fluid Flow in a Water Physical Model of an Aluminum Degassing Ladle<br>Equipped with an Impeller-Injector. Metallurgical and Materials Transactions B: Process Metallurgy<br>and Materials Processing Science, 2013, 44, 423-435. | 2.1 | 24        |
| 52 | Physical Modeling of Fluid Flow in Ladles of Aluminum Equipped with Impeller and Gas Purging For<br>Degassing. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing<br>Science, 2013, 44, 974-983.                      | 2.1 | 15        |
| 53 | The formation of vortex rings in shear-thinning liquids. Journal of Non-Newtonian Fluid Mechanics, 2013, 194, 1-13.                                                                                                                                        | 2.4 | 18        |
| 54 | Vortex ring formation for low Re numbers. Acta Mechanica, 2013, 224, 383-397.                                                                                                                                                                              | 2.1 | 24        |

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Reduction of compaction force in a confined bidisperse granular media. Physical Review E, 2013, 87, 052210.                                                            | 2.1 | 3         |
| 56 | Fluid elasticity increases the locomotion of flexible swimmers. Physics of Fluids, 2013, 25, .                                                                         | 4.0 | 83        |
| 57 | Power spectral distributions of pseudo-turbulent bubbly flows. Physics of Fluids, 2013, 25, .                                                                          | 4.0 | 42        |
| 58 | Pseudoturbulence in Bubbly and Transition Flow Regimes. Environmental Science and Engineering, 2013, , 217-224.                                                        | 0.2 | 0         |
| 59 | Microbubble generation using fiber optic tips coated with nanoparticles. Optics Express, 2012, 20, 8732.                                                               | 3.4 | 29        |
| 60 | On the hydrodynamics characterization of the straight Maxblend® impeller with Newtonian fluids.<br>Chemical Engineering Research and Design, 2012, 90, 1117-1128.      | 5.6 | 18        |
| 61 | Computer simulations of the collapse of columns formed by elongated grains. Physical Review E, 2012, 85, 061304.                                                       | 2.1 | 19        |
| 62 | On the deformation of gas bubbles in liquids. Physics of Fluids, 2012, 24, .                                                                                           | 4.0 | 130       |
| 63 | Note: Design of a novel rotating magnetic field device. Review of Scientific Instruments, 2012, 83, 066109.                                                            | 1.3 | 16        |
| 64 | A criterion for the transition from wall to core peak gas volume fraction distributions in bubbly<br>flows. International Journal of Multiphase Flow, 2012, 43, 56-61. | 3.4 | 15        |
| 65 | Study of the properties of bubbly flows in Boger-type fluids. Journal of Non-Newtonian Fluid<br>Mechanics, 2012, 175-176, 1-9.                                         | 2.4 | 29        |
| 66 | On the Modeling Strategies for Hydrodynamic Slugging in Conduits of General Shapes and Layouts.<br>Environmental Science and Engineering, 2012, , 313-318.             | 0.2 | 0         |
| 67 | Application of the Euler–Lagrange Method to Model Developed Hydrodynamic Slugs in Conduits.<br>Journal of Fluids Engineering, Transactions of the ASME, 2011, 133, .   | 1.5 | 4         |
| 68 | Effect of eccentricity on the pumping capacity in an unbaffled vessel. Canadian Journal of Chemical<br>Engineering, 2011, 89, 1051-1058.                               | 1.7 | 7         |
| 69 | Collisions in a liquid fluidized bed. International Journal of Multiphase Flow, 2011, 37, 695-705.                                                                     | 3.4 | 36        |
| 70 | Mathematical and physical simulation of the interaction between a gas jet and a liquid free surface.<br>Applied Mathematical Modelling, 2011, 35, 4991-5005.           | 4.2 | 41        |
| 71 | Bubble cluster formation in shear-thinning inelastic bubbly columns. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 32-41.                                       | 2.4 | 32        |
| 72 | Hydrodynamic interaction between a pair of bubbles ascending in shear-thinning inelastic fluids.<br>Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 118-132.      | 2.4 | 65        |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Fluid velocity fluctuations in a collision of a sphere with a wall. Physics of Fluids, 2011, 23, .                                                                                          | 4.0 | 6         |
| 74 | Study of the Velocity and Strain Fields in the Flow Through Prosthetic Heart Valves. Journal of<br>Biomechanical Engineering, 2011, 133, 121003.                                            | 1.3 | 5         |
| 75 | Evaluation of drag correction factor for spheres settling in associative polymers. Rheologica Acta, 2010, 49, 979-984.                                                                      | 2.4 | 9         |
| 76 | The micromechanical behavior of lyophilized glutaraldehyde-treated bovine pericardium under uniaxial tension. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3, 640-646. | 3.1 | 16        |
| 77 | Mathematical Modeling of Impingement of an Air Jet in a Liquid Bath. Materials Research Society<br>Symposia Proceedings, 2010, 1276, 1.                                                     | 0.1 | Ο         |
| 78 | Modelado fÃsico de la incidencia de un chorro de aire sobre una superficie de agua. Revista De<br>Metalurgia, 2010, 46, 421-434.                                                            | 0.5 | 1         |
| 79 | The coefficient of restitution for air bubbles colliding against solid walls in viscous liquids. Physics of Fluids, 2009, 21, .                                                             | 4.0 | 57        |
| 80 | Measurements of the streamwise vorticity in the wake of an oscillating bubble. International Journal of Multiphase Flow, 2009, 35, 195-203.                                                 | 3.4 | 66        |
| 81 | On the flow of associative polymers past a sphere: Evaluation of negative wake criteria. Physics of Fluids, 2009, 21, .                                                                     | 4.0 | 12        |
| 82 | Path instability of rising spheroidal air bubbles: A shape-controlled process. Physics of Fluids, 2008, 20, .                                                                               | 4.0 | 102       |
| 83 | Heat Transfer Resulting From the Interaction of a Vortex Pair With a Heated Wall. Journal of Heat<br>Transfer, 2008, 130, .                                                                 | 2.1 | 8         |
| 84 | The effect of confinement on the motion of a single clean bubble. Journal of Fluid Mechanics, 2008, 616, 419-443.                                                                           | 3.4 | 40        |
| 85 | Motion of a particle near a rough wall in a viscous shear flow. Journal of Fluid Mechanics, 2007, 570, 431-453.                                                                             | 3.4 | 55        |
| 86 | Measurement of pseudoturbulence intensity in monodispersed bubbly liquids for<br>10 <re<500. .<="" 19,="" 2007,="" fluids,="" of="" physics="" td=""><td>4.0</td><td>63</td></re<500.>      | 4.0 | 63        |
| 87 | Increased mobility of bidisperse granular avalanches. Journal of Fluid Mechanics, 2007, 593, 475-504.                                                                                       | 3.4 | 69        |
| 88 | The unsteady drag force on a cylinder immersed in a dilute granular flow. Physics of Fluids, 2006, 18, 043301.                                                                              | 4.0 | 30        |
| 89 | A note on the modelling of the bouncing of spherical drops or solid spheres on a wall in viscous fluid. Chemical Engineering Science, 2006, 61, 3543-3549.                                  | 3.8 | 65        |
| 90 | A study of velocity discontinuity for single air bubbles rising in an associative polymer. Physics of Fluids, 2006, 18, 121510.                                                             | 4.0 | 39        |

| #   | Article                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Velocity fluctuations resulting from the interaction of a bubble with a vertical wall. Physics of Fluids, 2005, 17, 098106.                                    | 4.0 | 20        |
| 92  | Clustering in high Re monodispersed bubbly flows. Physics of Fluids, 2005, 17, 091701.                                                                         | 4.0 | 35        |
| 93  | Computer simulations of the collapse of a granular column. Physics of Fluids, 2005, 17, 031703.                                                                | 4.0 | 115       |
| 94  | Shear flow of a suspension of bubbles rising in an inclined channel. Journal of Fluid Mechanics, 2004, 515, 261-292.                                           | 3.4 | 11        |
| 95  | Measurement of the temperature rise in non-Newtonian oscillatory pipe flows. Journal of Non-Newtonian Fluid Mechanics, 2003, 109, 157-176.                     | 2.4 | 10        |
| 96  | The flow of non-Newtonian fluids around bubbles and its connection to the jump discontinuity.<br>Journal of Non-Newtonian Fluid Mechanics, 2003, 111, 199-209. | 2.4 | 59        |
| 97  | Dilute granular flow around an immersed cylinder. Physics of Fluids, 2003, 15, 3318-3330.                                                                      | 4.0 | 90        |
| 98  | Compaction force in a confined granular column. Physical Review E, 2003, 68, 051301.                                                                           | 2.1 | 9         |
| 99  | Impedance probe to measure local gas volume fraction and bubble velocity in a bubbly liquid. Review of Scientific Instruments, 2003, 74, 2817-2827.            | 1.3 | 15        |
| 100 | Dense granular flow around an immersed cylinder. Physics of Fluids, 2003, 15, 1622.                                                                            | 4.0 | 141       |
| 101 | Revisiting the 1954 suspension experiments of R. A. Bagnold. Journal of Fluid Mechanics, 2002, 452, 1-24.                                                      | 3.4 | 120       |
| 102 | Measurements of the average properties of a suspension of bubbles rising in a vertical channel.<br>Journal of Fluid Mechanics, 2001, 429, 307-342.             | 3.4 | 125       |
| 103 | Particle–wall collisions in a viscous fluid. Journal of Fluid Mechanics, 2001, 433, 329-346.                                                                   | 3.4 | 303       |
| 104 | GRAIN DRYING AND AERATION IN A SOLAR HEXAGONAL SILO. Particulate Science and Technology, 2001, 19, 45-65.                                                      | 2.1 | 0         |
| 105 | Solid fraction fluctuations in solid–liquid flows. International Journal of Multiphase Flow, 2000, 26,<br>763-781.                                             | 3.4 | 37        |
| 106 | Mechanics of Immersed Particle Collisions. Journal of Fluids Engineering, Transactions of the ASME, 1999, 121, 179-184.                                        | 1.5 | 32        |
| 107 | The impulsive motion of a liquid resulting from a particle collision. Journal of Fluid Mechanics, 1998, 375, 345-361.                                          | 3.4 | 12        |
| 108 | Collisional particle pressure measurements in solid–liquid flows. Journal of Fluid Mechanics, 1997,<br>353, 261-283.                                           | 3.4 | 85        |

| #   | Article                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | On the Direct and Radiated Components of the Collisional Particle Pressure in Liquid-Solid Flows.<br>Flow, Turbulence and Combustion, 1997, 58, 305-317. | 0.2 | 3         |