Zhongbing Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3696737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring breath biomarkers in BLM-induced pulmonary fibrosis mice with associative ionization time-of-flight mass spectrometry. Talanta, 2022, 239, 123120.	5.5	7
2	Inhibition of GCN2 alleviates hepatic steatosis and oxidative stress in obese mice: Involvement of NRF2 regulation. Redox Biology, 2022, 49, 102224.	9.0	18
3	DDAH1 Protects against Acetaminophen-Induced Liver Hepatoxicity in Mice. Antioxidants, 2022, 11, 880.	5.1	7
4	Vanadium(IV)-Chlorodipicolinate Protects against Hepatic Steatosis by Ameliorating Lipid Peroxidation, Endoplasmic Reticulum Stress, and Inflammation. Antioxidants, 2022, 11, 1093.	5.1	3
5	Inhibition of GCN2 Alleviates Cardiomyopathy in Type 2 Diabetic Mice via Attenuating Lipotoxicity and Oxidative Stress. Antioxidants, 2022, 11, 1379.	5.1	2
6	Tempol ameliorates polycystic ovary syndrome through attenuating intestinal oxidative stress and modulating of gut microbiota composition-serum metabolites interaction. Redox Biology, 2021, 41, 101886.	9.0	39
7	Adipose-derived stem cells therapy effectively attenuates PM2.5-induced lung injury. Stem Cell Research and Therapy, 2021, 12, 355.	5.5	9
8	Metformin protects against PM2.5-induced lung injury and cardiac dysfunction independent of AMP-activated protein kinase α2. Redox Biology, 2020, 28, 101345.	9.0	53
9	Urban airborne PM2.5-activated microglia mediate neurotoxicity through glutaminase-containing extracellular vesicles in olfactory bulb. Environmental Pollution, 2020, 264, 114716.	7.5	36
10	Kidney failure, arterial hypertension and left ventricular hypertrophy in rats with loss of function mutation of SOD3. Free Radical Biology and Medicine, 2020, 152, 787-796.	2.9	16
11	The effect of exposure time and concentration of airborne PM2.5 on lung injury in mice: A transcriptome analysis. Redox Biology, 2019, 26, 101264.	9.0	48
12	The amino acid sensor general control nonderepressible 2 (GCN2) controls TH9 cells and allergic airway inflammation. Journal of Allergy and Clinical Immunology, 2019, 144, 1091-1105.	2.9	13
13	Indirect effect of PM1 on endothelial cells via inducing the release of respiratory inflammatory cytokines. Toxicology in Vitro, 2019, 57, 203-210.	2.4	27
14	Short term Pm2.5 exposure caused a robust lung inflammation, vascular remodeling, and exacerbated transition from left ventricular failure to right ventricular hypertrophy. Redox Biology, 2019, 22, 101161.	9.0	129
15	TMT-Based Quantitative Proteomics Analysis Reveals Airborne PM2.5-Induced Pulmonary Fibrosis. International Journal of Environmental Research and Public Health, 2019, 16, 98.	2.6	32
16	GCN2 deficiency ameliorates cardiac dysfunction in diabetic mice by reducing lipotoxicity and oxidative stress. Free Radical Biology and Medicine, 2019, 130, 128-139.	2.9	36
17	YAP promotes breast cancer metastasis by repressing growth differentiation factor-15. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1744-1753.	3.8	50
18	GCN2 deficiency ameliorates doxorubicin-induced cardiotoxicity by decreasing cardiomyocyte apoptosis and myocardial oxidative stress. Redox Biology, 2018, 17, 25-34.	9.0	55

ZHONGBING LU

#	Article	IF	CITATIONS
19	GCN2 deficiency protects mice from denervation-induced skeletal muscle atrophy via inhibiting FoxO3a nuclear translocation. Protein and Cell, 2018, 9, 966-970.	11.0	8
20	Nrf2 deficiency exacerbates PM2.5-induced olfactory bulb injury. Biochemical and Biophysical Research Communications, 2018, 505, 1154-1160.	2.1	22
21	GCN2 deficiency protects against high fat diet induced hepatic steatosis and insulin resistance in mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3257-3267.	3.8	26
22	AMPKα2 deficiency exacerbates long-term PM2.5 exposure-induced lung injury and cardiac dysfunction. Free Radical Biology and Medicine, 2018, 121, 202-214.	2.9	67
23	Dimethylarginine Dimethylaminohydrolase 1 Deficiency Induces the Epithelial to Mesenchymal Transition in Renal Proximal Tubular Epithelial Cells and Exacerbates Kidney Damage in Aged and Diabetic Mice. Antioxidants and Redox Signaling, 2017, 27, 1347-1360.	5.4	21
24	Cardiomyocyte dimethylarginine dimethylaminohydrolase-1 (DDAH1) plays an important role in attenuating ventricular hypertrophy and dysfunction. Basic Research in Cardiology, 2017, 112, 55.	5.9	30
25	Dimethylarginine Dimethylaminohydrolase 1 Protects Against High-Fat Diet-Induced Hepatic Steatosis and Insulin Resistance in Mice. Antioxidants and Redox Signaling, 2017, 26, 598-609.	5.4	36
26	Airborne PM2.5-Induced Hepatic Insulin Resistance by Nrf2/JNK-Mediated Signaling Pathway. International Journal of Environmental Research and Public Health, 2017, 14, 787.	2.6	42
27	AMP-activated kinase α2 deficiency protects mice from denervation-induced skeletal muscle atrophy. Archives of Biochemistry and Biophysics, 2016, 600, 56-60.	3.0	25
28	DDAH1 deficiency promotes intracellular oxidative stress and cell apoptosis via a miR-21-dependent pathway in mouse embryonic fibroblasts. Free Radical Biology and Medicine, 2016, 92, 50-60.	2.9	33
29	DDAH1 plays dual roles in PM2.5 induced cell death in A549 cells. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2793-2801.	2.4	33
30	The protein arginine methyltransferase <scp>PRMT</scp> 5 regulates Aβâ€induced toxicity in human cells and <i>Caenorhabditis elegans</i> models of Alzheimer's disease. Journal of Neurochemistry, 2015, 134, 969-977.	3.9	30
31	hCLP46 increases Smad3 protein stability via inhibiting its ubiquitin-proteasomal degradation. Protein and Cell, 2015, 6, 767-770.	11.0	4
32	Asymmetric dimethylarginine exacerbates AÎ ² -induced toxicity and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radical Biology and Medicine, 2015, 79, 117-126.	2.9	47
33	S-nitrosylation of PDE5 increases its ubiquitin–proteasomal degradation. Free Radical Biology and Medicine, 2015, 86, 343-351.	2.9	16
34	Metformin Protects Against Systolic Overload–Induced Heart Failure Independent of AMP-Activated Protein Kinase α2. Hypertension, 2014, 63, 723-728.	2.7	66
35	Loss of the Eukaryotic Initiation Factor 2α Kinase General Control Nonderepressible 2 Protects Mice From Pressure Overload–Induced Congestive Heart Failure Without Affecting Ventricular Hypertrophy. Hypertension, 2014, 63, 128-135.	2.7	40
36	Endoplasmic Reticulum Stress Sensor Protein Kinase R–Like Endoplasmic Reticulum Kinase (PERK) Protects Against Pressure Overload–Induced Heart Failure and Lung Remodeling. Hypertension, 2014, 64, 738-744.	2.7	86

ZHONGBING LU

#	Article	IF	CITATIONS
37	Neuroprotective effects of aqueous extracts of Uncaria tomentosa: Insights from 6-OHDA induced cell damage and transgenic Caenorhabditis elegans model. Neurochemistry International, 2013, 62, 940-947.	3.8	23
38	AMPK attenuates microtubule proliferation in cardiac hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H749-H758.	3.2	40
39	Left Ventricular Failure Produces Profound Lung Remodeling and Pulmonary Hypertension in Mice. Hypertension, 2012, 59, 1170-1178.	2.7	124
40	AMP Activated Protein Kinase-α2 Regulates Expression of Estrogen-Related Receptor-α, a Metabolic Transcription Factor Related to Heart Failure Development. Hypertension, 2011, 58, 696-703.	2.7	76
41	Exacerbated Pulmonary Arterial Hypertension and Right Ventricular Hypertrophy in Animals With Loss of Function of Extracellular Superoxide Dismutase. Hypertension, 2011, 58, 303-309.	2.7	71
42	Dimethylarginine Dimethylaminohydrolase-1 Is the Critical Enzyme for Degrading the Cardiovascular Risk Factor Asymmetrical Dimethylarginine. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1540-1546.	2.4	119
43	Adenosine kinase regulation of cardiomyocyte hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1722-H1732.	3.2	16
44	Oxidative Stress Regulates Left Ventricular PDE5 Expression in the Failing Heart. Circulation, 2010, 121, 1474-1483.	1.6	149
45	PGC-1α Regulates Expression of Myocardial Mitochondrial Antioxidants and Myocardial Oxidative Stress After Chronic Systolic Overload. Antioxidants and Redox Signaling, 2010, 13, 1011-1022.	5.4	186
46	Overexpression of Mitochondrial Ferritin Sensitizes Cells to Oxidative Stress Via an Iron-Mediated Mechanism. Antioxidants and Redox Signaling, 2009, 11, 1791-1803.	5.4	28
47	Extracellular superoxide dismutase protects the heart against oxidative stress and hypertrophy after myocardial infarction. Free Radical Biology and Medicine, 2008, 44, 1305-1313.	2.9	86
48	Xanthine Oxidase Inhibition With Febuxostat Attenuates Systolic Overload-Induced Left Ventricular Hypertrophy and Dysfunction in Mice. Journal of Cardiac Failure, 2008, 14, 746-753.	1.7	77
49	Adenosine A ₃ Receptor Deficiency Exerts Unanticipated Protective Effects on the Pressure-Overloaded Left Ventricle. Circulation, 2008, 118, 1713-1721.	1.6	41
50	Ecto-5′-Nucleotidase Deficiency Exacerbates Pressure-Overload–Induced Left Ventricular Hypertrophy and Dysfunction. Hypertension, 2008, 51, 1557-1564.	2.7	39
51	Extracellular Superoxide Dismutase Deficiency Exacerbates Pressure Overload–Induced Left Ventricular Hypertrophy and Dysfunction. Hypertension, 2008, 51, 19-25.	2.7	91
52	β-Carotene induces apoptosis and up-regulates peroxisome proliferator-activated receptor γ expression and reactive oxygen species production in MCF-7 cancer cells. European Journal of Cancer, 2007, 43, 2590-2601.	2.8	110
53	Structure–activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochemistry International, 2006, 48, 263-274.	3.8	390
54	Mitochondrial reactive oxygen species and nitric oxide-mediated cancer cell apoptosis in 2-butylamino-2-demethoxyhypocrellin B photodynamic treatment. Free Radical Biology and Medicine, 2006, 41, 1590-1605.	2.9	67

#	Article	IF	CITATIONS
55	Adsorption of Cu(II) from aqueous solutions by tannins immobilized on collagen. Journal of Chemical Technology and Biotechnology, 2004, 79, 335-342.	3.2	40